

PHASE II FOCUSED SITE INVESTIGATION

Downtown Redevelopment Site Hill & 4th Street City of Los Angeles, Los Angeles County, California

Prepared For:

Equity Residential Chicago, Illinois

Prepared By:

Blackstone Consulting LLC Project No. EQREIL092.02

February 4, 2016

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	
1.1	SITE SETTING AND DESCRIPTION	2
1.2	REVELANT SITE BACKGROUND	2
1.3	PURPOSE AND SCOPE OF WORK	3
2.0	FIELD ACTIVITIES	4
2.1	PRE-FIELD ACTIVITIES	4
2.2	FIELD METHODS AND OBSERVATIONS	4
2.	2.1 Geophysical Investigation Methods and Observations	4
2.	2.2 Sampling Methods and Observations – Soil Vapor Sampling	5
2.	2.3 Sampling Methods and Observations – Soil Sampling	6
2.	2.4 Sampling Methods and Observations - Groundwater Sampling	6
3.0	LABORATORY ANALYSES	8
3.1	SOIL VAPOR ANALYTICAL RESULTS	9
3.2	SOIL ANALYTICAL RESULTS	9
3.3	GROUNDWATER ANALYTICAL RESULTS	10
4.0	SUMMARY OF FINDINGS, CONCLUSIONS, & RECOMMENDATIONS	12
5.0	SIGNATURES OF ENVIRONMENTAL PROFESSIONALS	14
6.0	LIMITATIONS, EXCEPTIONS AND RELIANCE	15

APPENDICES

Appendix A: Figures

Figure 1: Site Location Map

Figure 2: Sample Location Map

Appendix B: Boring Logs

Appendix C: Data Summary Tables

Table 1: Summary of Soil Vapor Analytical Results

Table 2: Summary of Soil Analytical Results - Hydrocarbons and VOCs

- Table 3: Summary of Soil Analytical Results Metals
- Table 4: Summary of Groundwater Analytical Results
- Table 5: Summary of Dewatering Analytical Results

Appendix D: Laboratory Analytical Reports

1.0 INTRODUCTION

Blackstone Consulting LLC (Blackstone) performed a Phase II Focused Site Investigation (FSI) at the proposed redevelopment site located at the intersection of 4th and Hill Streets in downtown Los Angeles, Los Angeles County, California (site). This investigation was based on the tasks outlined in Blackstone's December 4, 2015, *Proposal for Phase II Focused Site Investigation (FSI)* for the site. Additional site background information and the purpose and scope of work for the investigation are discussed in the following sections.

1.1 SITE SETTING AND DESCRIPTION

The site comprises 0.7 acres and is primarily occupied by a surface parking lot, parking attendant kiosk and a small taco stand. The site is within downtown Los Angeles in an area characterized by dense commercial and mixed property uses (Figure 1).

According to the U.S. Geological Survey (USGS) 7.5-minute series Los Angeles topographic quadrangle dated 1994, the site is situated at approximately 280 feet above mean sea level. Topography at the property slopes gently down towards the south.

1.2 REVELANT SITE BACKGROUND

In November 2015, Blackstone completed a review of available site investigation reports and identified the following data gaps at the site that are the focus of this scope of work:

- **Historical Onsite/Offsite Drycleaner** Previous environmental investigation borings completed during due diligence were co-located with the geotechnical investigation borings. While these sampling locations provide an overall understanding of the order of magnitude of environmental issues related to the site and assist in generally profiling site soil for future disposal, the boring locations are not biased to the footprints of former areas of concern (AOCs) at the site. Specifically, borings were not completed within the former footprint of 354 South Hill Street, where an onsite drycleaning operation was recorded in 1924, and borings are not ideally located to fully evaluate 321-329 West 4th Street, where offsite drycleaning operations were recorded in 1924, 1933, and 1937 (Figure 2).
- Unspecified Origins of Detected Compounds The previous subsurface investigation identified isolated medium- and high-range hydrocarbons and elevated concentrations of lead, barium and arsenic in soil as well as trace concentrations of tetrachloroethene (PCE) in soil vapor. The laboratory also reported concentrations of the leak check compounds (LCC) in the soil vapor results; high detection of the LCC suggests improperly constructed soil vapor investigation borings. Blackstone suspects that the limited nature of the investigation and the absence of biased sampling locations limited

the conclusions that could be drawn from the detections found during the previous investigation.

- **Heating oil tank** It has been suggested that hydrocarbon-stained soil identified by the geotechnical borings in the northern portion of the site may be attributable to historical use of an underground heating oil tank. Although heating oil tanks were not routinely common in this geographic region, they were used in isolated areas of downtown settings during historical periods and were generally not permitted. However, a routine tank locating evaluation, such as a geophysical survey, has not yet been completed.
- **Groundwater condition** Previous investigations identified elevated concentrations of copper, lead and zinc in site groundwater; however, the elevated detections may be attributable to particulates in the samples, as the samples were not filtered. Blackstone considers metals in groundwater a data gap, as a firm conclusion regarding groundwater condition was not established by the previous investigation.

Blackstone developed the scope of work discussed below to address these noted data gaps.

1.3 PURPOSE AND SCOPE OF WORK

As noted in Blackstone's December 2015 proposal, the purpose of this FSI scope of work was to resolve the data gaps identified during the document review and to assist the development team with obtaining additional subsurface data at the site to support redevelopment needs, such as the handling and disposal of exhumed soil and groundwater from construction dewatering.

The scope of work included the completion of twelve soil vapor sampling points and eight soil borings, four of which were converted into temporary groundwater wells (see Figure 2 of Appendix A), and the retrieval of soil vapor, soil and groundwater samples from these borings for laboratory analyses. Blackstone's field methodology, field observations and the results of laboratory analyses conducted on the soil, soil vapor and groundwater samples collected from the site are discussed in the report sections that follow.

The investigation was designed as a focused evaluation and is not intended to be a complete characterization of the environmental condition of the site soil or groundwater. This work is not intended or expected to provide complete characterization, delineation or comprehensive assessment of the entire site or the deeper underlying regional aquifer.

2.0 FIELD ACTIVITIES

This section summarizes the investigative methods utilized for this FSI. The fieldwork activities were conducted at the site between December 22 and 29, 2015. The pre-field and field activities are presented in the following sections.

2.1 PRE-FIELD ACTIVITIES

Prior to initiating the site sampling activities, Blackstone performed the following pre-field activities:

- Prepared a site-specific Health and Safety Plan (HASP)
- Contracted and scheduled the necessary utility clearance, field services, drilling, analytical laboratory and other contractors
- Obtained a well permit for advancing borings into groundwater from the Los Angeles County Department of Environmental Health
- Obtained and calibrated necessary sampling and field equipment
- Obtained specialized sampling containers and devices
- Obtained a state utility clearance as required by state law

2.2 FIELD METHODS AND OBSERVATIONS

The following sections summarize Blackstone's field methods and observations. Sampling locations are depicted on the maps provided in Appendix A.

2.2.1 Geophysical Investigation Methods and Observations

To address the data gap related to the possible presence of an unpermitted heating oil UST at the site, prior to the commencement of subsurface drilling, a site-wide geophysical survey was performed to verify whether subsurface features consistent with a UST remain in place. The geophysical survey included a compliment of evaluation techniques, specifically EM-61 high sensitivity metal detection, ground penetrating radar (GPR), and electromagnetic utility locators.

Pacific Coast Locators (PCL) performed the geophysical survey on December 22, 2015. The survey identified an anomaly that trends from the southern portion of the site near the driveway along 4th Street to the northeast portion of the site; this anomaly may be attributable to a historical sewer system. The survey also identified a second anomaly northwest of the guard shack that appears consistent with a former cistern. The geophysical survey revealed no subsurface anomalies consistent with an in-place heating oil UST or a former UST excavation at the site.

As the contractors for the state utility clearance call center only identify the general location of buried public utilities and do not locate private water lines or other on-site buried obstructions on private property, the geophysical survey also assisted in identifying possible obstructions within the proposed subsurface investigation areas. The utility locating survey identified a few underground utilities and drilling locations were moved slightly to avoid these obstructions. The final locations are shown on Figure 2.

2.2.2 Sampling Methods and Observations – Soil Vapor Sampling

Optimal Technology, Inc., a California licensed contractor, completed the soil vapor evaluation at the site using minimally invasive hydraulic placed probes installed to 5 feet below ground surface (bgs). The soil vapor probes were placed at the 12 locations noted in Figure 2 to verify the subsurface condition in the vicinity of the historical on- and off-site drycleaner and to confirm whether additional areas of concern were present throughout the site. The retrieved soil vapor samples were analyzed via mobile on-site laboratory. The soil gas sampling followed the Department of Toxic Substances Control's (DTSC's) advisory for the performance of active soil gas investigations,¹ including the requirements for leak testing, purge testing and probe equilibration.

In each probe location, a period of at least 20 minutes of equilibration time was allowed between the probe installation and soil gas sampling; hydraulically placed probes do not require extensive equilibration time. Soil gas samples were collected from each probe at a constant low flow rate measuring approximately 200 milliliters per minute (ml/min) as shown by an in-line vacuum gauge to limit stripping (i.e. enhanced compound partitioning from impacted soil or groundwater), and to prevent ambient air intrusion and increase the likelihood of representative samples. A three-volume purge was used for the soil gas sampling at the Site. New tubing and clean gas probes were used at each sampling point to prevent cross contamination.

Leak testing was conducted at every soil gas probe location. Isobutane, found in common shaving cream, was used as the tracer gas. The tracer gas compound was applied to the soil gas probes at each point of connection in which ambient air could enter the sampling system, including the top of the sampling probe where the tubing meets the probe connection and the surface bentonite seals. A detection of the tracer compound in the subsurface soil vapor sample will indicate that ambient air intrusion occurred. No leaks were determined to have occurred during the sampling activities.

Vapor samples were retrieved from each sampling location in SGE gas-tight syringes by drawing the sample through a luer-lock connection that connects the sampling probe and vacuum pump. Immediately following collection, samples were transported to the on-site mobile laboratory and injected into the gas chromatograph/purge and trap. The findings of the laboratory analyses are presented in Section 3.0.

After sampling, the soil probes were backfilled with hydrated bentonite granular and the surfaces were repaired to match the existing surface.

¹ April 2012 Joint publication between the DTSC and the Los Angeles and San Francisco Regional Water Quality Control Boards, published at:

 $https://dtsc.ca.gov/SiteCleanup/upload/VI_ActiveSoilGasAdvisory_FINAL_043012.pdf$

2.2.3 Sampling Methods and Observations – Soil Sampling

J&H Drilling, Inc., a California licensed drilling contractor, drilled 8 soil borings at the site utilizing a hollow-stem auger drilling rig. To avoid potential unmarked utilities or other obstructions, the borings were cleared to 5 feet bgs using a hand auger prior to the advancement of the sampling flights. Soil samples were retrieved from the boreholes using an 18-inch California-modified split spoon sampler from an initial depth of 5 feet bgs to the borehole termination depth. Soil borings were completed in the following locations:

- Four (4) confirmation soil borings (SB-3 and SB-6 through SB-8) were placed in the area of the former dry cleaner to confirm the soil vapor findings and further characterize soil in this area of the site (locations are depicted in Appendix A, Figure 2).
- To assist in determining whether previously detected elevated concentrations of petroleum compounds and metals in soil are indicative of a past release or are attributable to background historical fill conditions, 4 additional soil borings (SB-1, SB-2, SB-4 and SB-5) were completed in other areas of the site, as identified in Figure 2.
- These collective borings also serve to expand the soil dataset to assist the future soil disposal team with characterizing the soil exhumed from the site during construction.

The recovered soil samples from each boring were visually field-screened for evidence of environmental impacts, such as apparent odors or visually apparent contamination, and were logged for lithology. Soil from each boring was also screened for the presence of total volatile organic compounds (total VOCs) using a calibrated MiniRAE 3000 photo-ionization detector (PID). Screened soil yielded no total VOC readings in excess of background levels (1 part per million, ppm). Visual evaluation of the extracted soil samples identified no obvious evidence of staining and none of the exhumed soil exhibited unusual odors. The recovered soil predominantly consisted of alluvium material comprising a mixture of silts (ML) and fine to coarse sands (SP and SW). Occasional gravelly sands (SW) were found at depths of 7, 10 and 20 feet bgs throughout the site. At SB-5, a lense of apparent crushed red brick was observed at a depth of 5 feet bgs and tile fragments were observed from beneath the asphalt to a depth of 5 feet bgs in boring SB-1; these observations are consistent with historical fill often present in this area of Los Angeles with development history exceeding 100 years. A detailed lithological description of each borehole is presented in Appendix B.

Soil samples were retrieved for laboratory analyses from depths of 1, 3, 5, 7 and 10 feet bgs, then at 5-foot inervals to the total depth of the borings at 30 feet bgs. The results of laboratory analyses of the retrieved samples are presented in Section 3.0.

2.2.4 Sampling Methods and Observations – Groundwater Sampling

To determine whether the elevated concentrations of metals in groundwater found during the past investigation are an artifact of the previous sampling method, four of the 8 soil borings (SB-

1, SB-2, SB-4 and SB-5) were completed as temporary groundwater monitoring wells to confirm groundwater quality, as identified in Figure 2. Once the soil borings were drilled to 30 feet bgs, 2-inch schedule 40 polyvinyl chloride (PVC), 0.010-inch slotted screen was installed from 15 to 30 feet bgs. Blank schedule 40 PVC casing was installed from 15 feet bgs to the surface.

Groundwater levels were allowed to stabilize to static levels prior to the collection of a grab groundwater sample from each boring. Each grab groundwater sample was retrieved from wells with sufficient water volume using low-flow techniques in compliance with applicable state standards; specifically, a low-flow sample was retrieved once field monitoring instruments demonstrated that the water quality measurements (such as conductivity) stabilized within 10% of previous readings. Groundwater levels ranged between 14.83 to 17.12 feet below the top of the casing. Despite allowing for 6 hours of recharge, SB-1 yielded no water for sampling.

The temporary groundwater monitoring wells were not surveyed; therefore, groundwater flow direction cannot be calculated.

3.0 LABORATORY ANALYSES

Soil vapor samples collected during this investigation were immediately analyzed on-site by Optimal Technology on December 23, 2015. Soil matrix and groundwater samples were submitted to Chemical and Environmental Laboratories, a National Environmental Laboratory Accreditation Conference (NELAC) certified laboratory, in Cerritos, California, for analysis. Chain-of-custody (COC) records documenting sample integrity were completed and submitted with the samples.

The retrieved soil vapor samples were submitted for laboratory analysis of:

 Volatile organic compounds (VOCs) by United States Environmental Protection Agency (US EPA) Method 8260B

Soil samples retrieved from the site were submitted for laboratory analysis of the following:

- VOCs by US EPA Method 8260B
- Total petroleum hydrocarbons (TPH) by US EPA Method 8015M
- Metals by USEPA Methods 6010/7471
- Soil samples exhibiting elevated metals concentrations were also submitted for the waste profiling analyses Soluble Threshold Limit Concentrations (STLC) and Toxicity Characteristic Leaching Procedure (TCLP)

To verify the findings of the previous investigation, groundwater samples were submitted for the following analyses:

- VOCs by US EPA Method 8260
- TPH by US EPA Method 8015M
- Dissolved Metals by USEPA Methods 6010/7471

To meet the RWQCB requirements for the general dewatering permit, groundwater samples were submitted for the following analyses:

- Total suspended solids (TDS)
- BODs 20C
- Oil and grease
- Settable solids
- Sulfides
- Phenols
- Residual chlorine
- Methylene blue active substances (MBAs)
- Semi-volatile organic compounds (SVOCs)
- VOCs
- Pesticides

• PCBs

The reported findings were compared against the following screening or other regulatory levels:

- Department of Toxic Substances Control Human and Ecological Risk Office (DTSC HERO) Note 3
- The US EPA Region 9 Regional Screening Levels (RSLs), November 2015
- California Maximum Contaminant Levels (CA-MCLs), April 2014
- Los Angeles Regional Water Quality Control Board General NPDES Permit No. CAG994004 Waste Discharge Requirements

Laboratory analytical results and the respective screening levels are summarized in the tables provided in Appendix C. Laboratory analytical reports, including the COC record and the laboratory quality assurance and quality control (QA/QC) documentation are provided in Appendix D.

The following sections summarize the findings of laboratory analyses of subsurface soil and soil vapor samples retrieved from the site during this FSI.

3.1 SOIL VAPOR ANALYTICAL RESULTS

The results of soil vapor analyses are summarized in the table provided in Appendix C and are discussed below:

• **VOCs:** Laboratory analyses revealed no detectable VOCs in the 12 soil vapor samples collected throughout the site (SV-1 through SV-12)

3.2 SOIL ANALYTICAL RESULTS

The results of soil analyses are summarized in the tables provided in Appendix C and are discussed below:

- **VOCs:** Laboratory analyses revealed no detectable concentrations of VOCs in any of the soil samples submitted for this analysis (SB-3, SB-6, SB-7 and SB-8).
- **TPH** Laboratory analyses revealed no detectable concentrations of extractable-range TPH (C₄ to C₄₀) in the soil samples submitted for this analysis (SB-1, SB-2, SB-4 and SB-5).
- **Metals:** As metals are naturally occurring in soil, laboratory analyses detected metals in soil samples retrieved from the site. However, most metals were detected at

concentrations less than the applicable regulatory actionable levels and were generally consistent among the samples, suggesting that the detected metals concentrations are representative of background conditions. However, soil samples collected from SB-2 at 3 feet bgs and SB-8 at 1 foot bgs exceeded both the US EPA Residential RSLs and DTSC HERO Note 3 Residential Screening Levels for lead. Soil samples collected from SB-2 at 5 feet bgs, SB-3 at 1 foot bgs, SB-5 at 3 feet bgs, SB-6 at 3 feet bgs and SB-7 at 1, 3 and 5 feet bgs exceeded the DTSC HERO Note 3 screening level for lead.

 Hazardous waste classification - Soil samples that exhibited elevated concentrations of lead were submitted for STLC and TCLP analyses. The soil samples retrieved from SB-2 at 3 feet bgs, SB-7 at 1 and 3 feet bgs and SB-8 at 1-foot bgs exceeded the STLC limit of 5.0 milligrams per liter (mg/L). The soil samples retrieved from SB-2 at 3 feet bgs and SB-8 at 1 foot bgs also exceed the TCLP limit of 5.0 mg/L.

Soil sampling revealed site-wide, elevated concentrations of lead limited to the upper 5 feet bgs; soil samples retrieved from greater than 7 feet bgs did not exceed screening thresholds. The observed distribution of lead in soil is consistent with contaminated fill and is not uncommon in this area of Los Angeles with greater than 100 years of developed history. During the site-wide excavation performed for redevelopment of the site, exhumed soil that exceeds the STLC limit will need to be managed as California hazardous waste; soil that exceeds the TCLP will need to be managed as Federal (RCRA) hazardous waste.

3.3 GROUNDWATER ANALYTICAL RESULTS

The results of groundwater analyses are summarized in the tables provided in Appendix C and are discussed below:

- VOCs: Groundwater retrieved from SB-5-GW exhibited low concentrations of VOCs. The majority of the detected concentrations were less than the applicable CA drinking water MCLs. Benzene was detected at a trace concentration of 6.2 micrograms per liter (μg/L) (Table 4), which slightly exceeds the drinking water MCL of 1 μg/L. The remaining groundwater samples retrieved during this evaluation yielded no detectable concentrations of VOCs.
- **TPH**: Trace, low-range hydrocarbons (C_4 - C_{12}) hydrocarbons were detected in groundwater retrieved from SB-5-GW at 0.5 μ g/L. The remaining groundwater samples retrieved from the site revealed no detectable concentrations of TPH.
- Metals: Laboratory analyses revealed detectable concentrations of barium, chromium, molybdenum and zinc; however, none of the detected concentrations exceeded applicable CA MCLs. No groundwater samples yielded detectable concentrations of lead.

The trace detected concentration of benzene found at SB-5 6.2 μ g/L during this investigation slightly exceeds the CA drinking water MCL of 1 μ g/L; however, the first encountered groundwater beneath the site is present in low quality perched zone that is not a known or suspected drinking water resource; therefore, other risk-based evaluation criteria are more appropriate for contextualizing the trace benzene result, such as the Regional Water Quality Control Board Low-Threat Underground Storage Tank Case Closure Policy. This risk-based policy allows benzene to remain in groundwater at concentrations order of magnitudes greater than observed during this investigation, and the low concentration of benzene identified in this investigation does not meet the definition of a nuisance as presented in the policy. Given that shallow groundwater is perched and poor quality, shallow soil and soil vapor investigation revealed no evidence of a release at the site, and risk-based screening criteria for non-drinking water resources are not exceeded, the encountered low concentration of benzene is considered a *de minimis* background groundwater condition and is not attributed to a release from the site.

Although elevated concentrations of lead are present in shallow soil, no lead was detected in groundwater samples retrieved during this FSI, which suggests the existing hardscape at the site restricts surface water infiltration and leaching of elevated concentrations from soil to underlying groundwater.

The results of the supplemental RWQCB analyses are also presented in the tables provided in Appendix C and are discussed below:

- MBAs: Trace concentrations of MBAs were detected in SB-2-GW and SB-4-GW at 0.13 and 0.14 mg/L, respectively. The detected concentrations do not exceed the LARWQCB daily or monthly discharge maximums noted in Table 5.Settleable and Total Suspended Solids: Laboratory analysis of each of the groundwater samples revealed concentrations of settleable and total suspended solids in excess of the LA-RWQCB daily and monthly discharge limit.
- Other analytes: Laboratory analyses revealed no detectable concentrations of PCBs, pesticides, SVOCs, BOD, Oil and Grease, chlorine, phenols or sulfides in the samples submitted for laboratory analyses.

The limited groundwater quality evaluation performed as part of this scope of work identified elevated settleable and total suspended solids in analyzed groundwater samples. Although low-flow field methods were used, this turbidity may be attributable to grab-groundwater sampling metholodogy. The groundwater quality data, including the background trace benzene detection at SB-5, should be shared with the future construction dewatering contractor for incorproation into a dewatering program designed to account for elevated solids and trace VOCs.

4.0 SUMMARY OF FINDINGS, CONCLUSIONS, & RECOMMENDATIONS

The scope of work presented in this report was conducted at the site between December 22 and December 28, 2015. In consideration of the scope of work, Blackstone found the following with respect to the previously identified data gaps:

- Historical on- and off-site drycleaner The scope of work revealed no detectable VOCs in soil vapor or soil at the site and no detectable concentrations of VOCs in groundwater typical of drycleaning chemicals. Given this, this scope of work revealed no evidence of releases related to the historical operation of the on- or off-site drycleaner. The previous investigation reported trace concentrations of PCE in soil vapor but elevated concentrations of leak detection compounds, which suggest improper seal on the vapor borings. Given that this FSI revealed no detectable VOCs in the 12 soil vapor samples collected throughout the site and no evidence of leak check compound in the vapor borings, the past detections of PCE in soil vapor are nullified.
- **Heating oil tank** The geophysical survey revealed no subsurface anomalies consistent with an in-place heating oil UST or a former UST excavation at the site.
- Unspecified Origins of Detected Compounds The previous subsurface investigation identified isolated medium- and high-range hydrocarbons and elevated concentrations of lead, barium and arsenic in soil. This FSI revealed only elevated concentrations of lead in soil, specifically, this FSI found site-wide, elevated concentrations of lead limited to the upper 5 feet bgs; soil samples retrieved from greater than 7 feet bgs did not exceed screening thresholds. The observed distribution of lead in soil is consistent with contaminated fill and is not uncommon in this area of Los Angeles with greater than 100 years of developed history. The previous soil findings may be attributable to decontamination procedures from co-locating the environmental borings with geotechnical investigation.
- Groundwater condition The previous investigation identified elevated concentrations of metals, notably lead, in groundwater. This FSI yielded no elevated concentrations of metals in groundwater, despite high turbidity and elevated concentrations of lead in soil. The previous elevated concentrations of metals in groundwater are likely attributable to particulates in unfiltered groundwater samples. The absence of elevated lead in groundwater as found from this FSI suggests the existing hardscape at the site restricts surface water infiltration and leaching of elevated concentrations of lead in soil to underlying groundwater. This FSI also identified a trace concentration of benzene at one groundwater sampling location that is considered representative of background groundwater conditions typical of poor quality, perched zone in this area.

Given resolution of the previously identified data gaps, based on the findings of this FSI, Blackstone offers the following considerations for upcoming construction planning at the site:

- Soil Management Plan (SMP) Blackstone understands that the City of Los Angeles Building Department requires submittal and approval of a Soil Management Plan (SMP) prior to the issuance of grading permits for the proposed redevelopment. The information presented in this document can form the basis of the development of the SMP. The SMP will detail the proposed management of soil during construction, monitoring, further waste characterization sampling and appropriate disposal; exhumed soil that exceeds the STLC limit will need to be managed as California hazardous waste and soil that exceeds the TCLP will need to be managed as Federal hazardous waste. The SMP will also detail the remaining waste sampling necessary to achieve the density typically required by a soil receiving facility.
- Groundwater quality Given that the groundwater encountered at the site is shallow and inconsistently present, first encountered groundwater beneath the site is likely a poor-quality perched zone that is not a drinking water source. The limited groundwater quality evaluation performed as part of this scope of work identified elevated settleable and total suspended solids in analyzed groundwater samples. Although low-flow field methods were used, this turbidity may be attributable to grab-groundwater sampling metholodogy. Regardless, the groundwater quality data obtained from this FSI, including the background trace benzene detection at SB-5, should be shared with the future construction dewatering contractor for incorproation into a dewatering program designed to account for elevated solids and trace VOCs.
- Subsurface Anomalies The geophysical survey identified an anomaly that trends from the southern portion of the site near the driveway along 4th Street to the northeast portion of the site; this anomaly may be attributable to a historical sewer system. The survey also identified a second anomaly northwest of the guard shack that appears consistent with a former cistern. Although not features suspected of environmental concern, these two anomalies may be encountered during excavation of the site.

This report was prepared for construction planning purposes and is not intended as a submittal to state agencies or other environmental oversight agencies. The findings of this report are limited to the scope of work performed.

5.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

This Phase II Focused Site Investigation (FSI) documents the research methodology used by qualified environmental professionals of Blackstone to evaluate subsurface conditions at the site based on the December 4, 2015, Scope of Work authorized by Equity Residential.

EOW

REGI

Prepared By:

las.

Patricia Dean Project Manager, Field Manager

<u>February 4, 2016</u> Date

Technical Review and Concurrence By:

F. Edwards Reynolds, Jr. Registered Civil Engineer, PE

Sarah Denton Senior Associate, PG#8269 CHG#1012

<u>February 4, 2016</u> Date

<u>February 4, 2016</u> Date

Principal Review By:

enicl

Becky Revick Principal

<u>February 4, 2016</u> Date

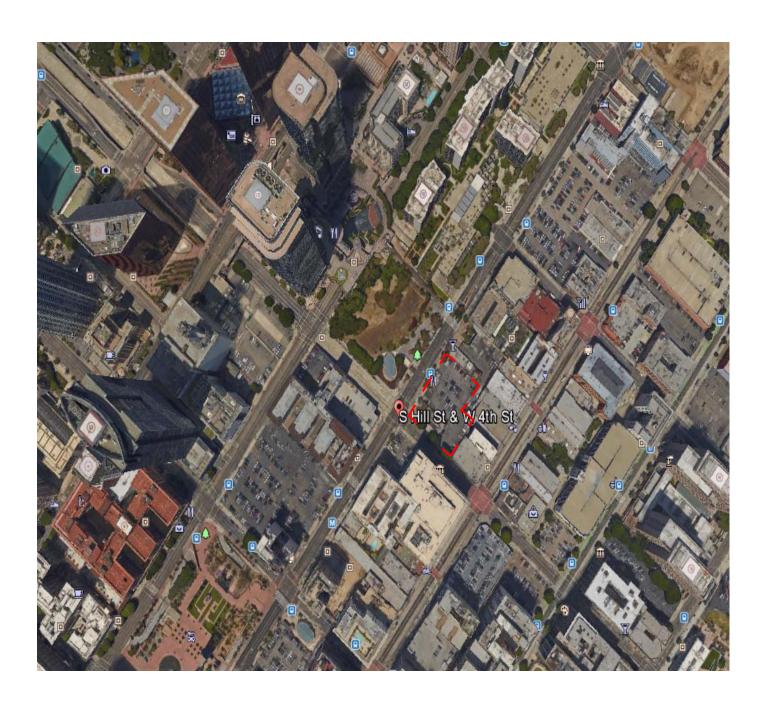
 $\frac{DD}{QA/QC}$

6.0 LIMITATIONS, EXCEPTIONS AND RELIANCE

This work was conducted in accordance with the December 4, 2015, Scope of Work authorized by Equity Residential. Blackstone has not performed any additional observations, investigations, studies, or other testing not specified in the SOW or this document. Blackstone shall not be held liable for the existence of any condition the discovery of which would have required the performance of services not completed under this SOW.

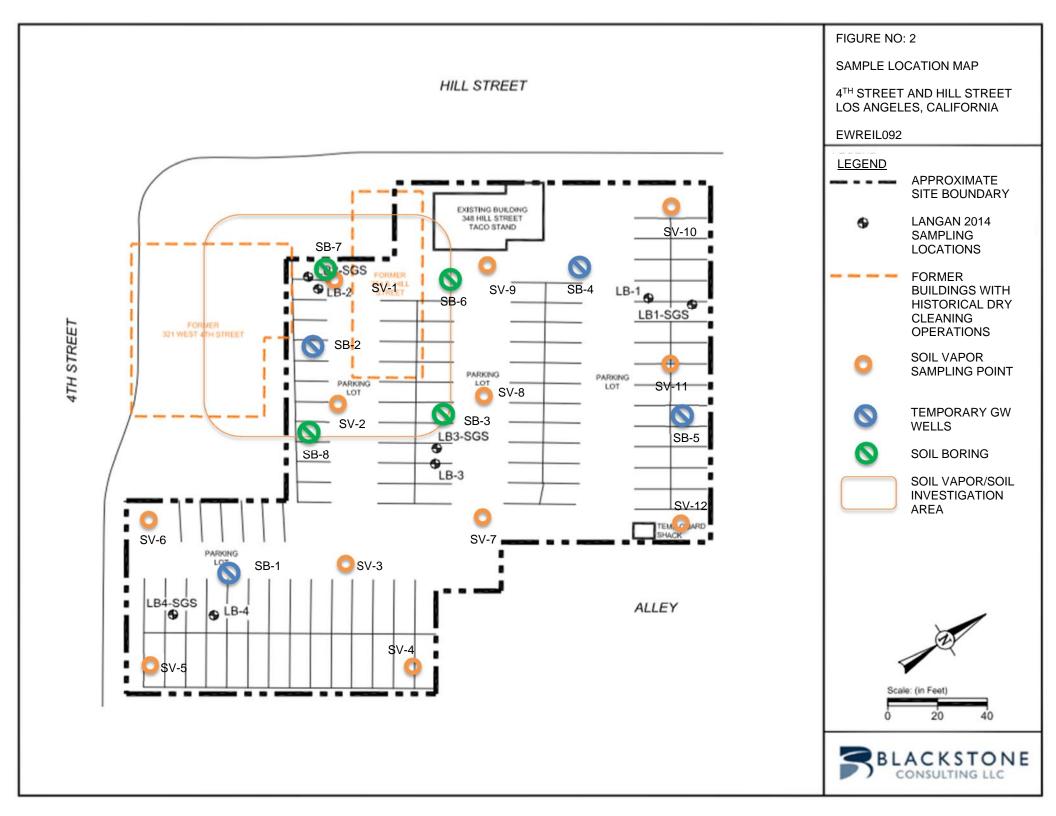
The investigation was designed as a focused evaluation and is not intended to be a complete characterization of the environmental condition of the site soil or groundwater. This work is not intended or expected to provide complete characterization, delineation or comprehensive assessment of the entire site or the deeper underlying regional aquifer. This investigation is not a geotechnical, seismic-related or structural geological evaluation.

Blackstone performed the professional services, obtained findings, rendered conclusions, and prepared recommendations in accordance with generally accepted practices of other environmental consultants in this area for similar investigations at the same time in the same geographical area.


This report reflects the site conditions observed and investigated by Blackstone as of the date of report preparation. The passage of time may result in significant changes in site conditions, technology, or economic conditions that could alter the findings and/or recommendations of this report. Accordingly, Blackstone's client and any other party to whom the report is provided recognize and agree that Blackstone shall bear no liability for deviations from observed conditions or available records due to the passage of time.

Conclusions stated herein are based upon available information and other documented sources. Blackstone relied upon information provided by site owner representatives, regulatory officials, and other informed individuals. Blackstone has assumed, where reasonable, that the information reviewed is true and accurate. Blackstone assumes no responsibility for inaccurate information that is not otherwise obvious in light of information of which Blackstone has actual knowledge.

This report may be relied upon by Equity Residential and each of their affiliates, attorneys, lenders, investors and each of their assigns subject to the July 9, 2007, Master Environmental Consulting Agreement (Agreement) between Equity Residential and Blackstone. No other person may rely on this report without written authorization from Blackstone.


APPENDIX A

FIGURES

SITE LOCATION MAP 4TH STREET AND HILL STREET LOS ANGELES, CALIFORNIA EQREIL092 **LEGEND** PROPERTY BOUNDARY ADOPTED FROM GOOGLE EARTH 2015 BLACKSTONE CONSULTING LLC

FIGURE NO: 1

APPENDIX B

BORING LOGS

		The Reynolds Gro Environmental Consulting & Co								
THE	GROUP	520 West 1st Street Ph: (714) Tustin, CA 92780 Fx: (714)	730	-539	97		-	_	PTH: 30	•
a California co		OJECT INFORMATION					C	RILLI	NG INFORMAT	ION
PROJE	CT:	8204 Blackstone LA		D	RILLI	NG C	:0.:		J&H Drilling, Co	D.
ADDRE	SS:	338 S. Hill Street		R	IG TY	PE:	CME-75			
LOGGE		Patricia Dean					F DRILI		Hollow Stem Au	ıger
DATE(S	6) DRILLED	: 12/28/15		S	AMPL	ING	METHC	DS:	Split Spoon	
		uring drilling completed well RE	VIE	NEC) BY:				APPROVED B	Y:
<u> </u>										
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE		RECOVERY	SAMPLE	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
0_		-	1					-		Concrete
-		Asphalt	SB-	1-1				0.0		Concrete
-		SP: Poorly-graded SAND; fine with trace medium sand, subangular; trace silt; loose-medium density; dry; olive gray; some tile fragments	SB-	1-3				0.0		
5-		SM: Silty SAND; very fine-fine sand, subangular; hard/cemented, dry, olive gray; trace large pebbles, subangular	SB-	1-5			18,22,25	5 0.0		
-		SP: Poorly-graded SAND with gravel; fine- medium sand, subangular; 10% small gravel, subangular; trace silt; dense; dry, olive gray	SB-	1-7			27,50	0.0		
10 -		SW: Gravelly SAND; fine-medium sand, subangular; small-medium gravel, subangular; trace silt; dense; dry; olive gray	SB-1	1-10			25,50	0.0		
∑15 -		/ SW: Well-graded SAND with silt; fine- / coarse sand; subangular; 10% silt; medium density; wet; olive gray	SB-1	1-15			16,24,26	5 0.0		—— Bentonite Cement Mixture
-		ML: SILT; nonplastic, no dilatency; trace fine sand; medium stiffness; dry; olive					<u>=</u>			
20 -		ML: As above	SB-1	1-20			8,13,16	0.0		
- 25		SP: Poorly-graded SAND with silt; fine sand; 10% silt; medium density; dry; olive gray	SB-1	1-25			10,12,16	8 0.0		
NOTES	 S: Hand aug	gered to 5' bgs								Page 1 of 2

THE REYNOLDS G a California corp	ROUP			t racting 0-5397	FIELD BOREHOLE LOO BOREHOLE NO.: SB-1 TOTAL DEPTH: 30'			
	PR	OJECT INFORMATION			DR	RILLIN	G INFORMATIO	N
PROJEC	CT:	8204 Blackstone LA		DRILLIN	G CO.:		J&H Drilling, Co.	
ADDRES	SS:	338 S. Hill Street		RIG TYP	E:		CME-75	
LOGGE		Patricia Dean			OF DRILLI		Hollow Stem Auge	r
DATE(S)	DRILLED	: 12/28/15		SAMPLIN				
		uring drilling completed well	REVIE	WED BY:				
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION		RECOVERY	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
30 -		ML: SILT with fine sand, nonplastic;						
-		medium stiffness; dry; olive gray	SE	3-1-30	9,10,15	0.0		
35								
NOTES	: Hand au	gered to 5' bgs						Page 2 of 2

THE REYNOLDS a California co	GROUP									LE LOG	
	PR	OJECT INFORMATION					D	RILLIN	NG INFORMATIO	N	
PROJE	CT:	8204 Blackstone LA		C	RILLI	ING C	O.:	J&H Drilling, Co.			
ADDRE	SS:	338 S. Hill Street		R	RIG TY	/PE:			CME-75		
LOGGE		Patricia Dean					F DRILL		Hollow Stem Auge	r	
DATE(S	6) DRILLED	: 12/28/15		S	SAMPI	LING	METHO	DS:	Split Spoon		
		uring drilling		\ ∕ /⊏I	ר פע				APPROVED BY: _		
▼ Wa	ater level in	completed well RE									
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION			RECOVERY	SAMPLE	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION	
0_					1	1		1		Concrete	
-		Asphalt	SB	8-2-1				0.0		— Concrete	
-		SP: Poorly-graded SAND, fine with trace medium sand; subangular; loose-medium									
-		density; dry; olive gray	SB	3-2-3				0.0			
-		SP: As above; trace small-medium gravel, subangular									
5-		SW: Gravelly SAND, fine sand; small-	SB	3-2-5	-		8,8,10	0.0			
		medium gravel, subangular; trace silt; loose; dry; olive gray									
			SB	8-2-7			5,11,16	0.0			
-		SP: Poorly-graded SAND with silt; fine sand; 10% silt; medium density; dry;					<u> </u>				
10 -	15232352	brown									
-		SP: As above; trace roots	SB-	-2-10			10,15,18	0.0			
-		/ SW: Well-graded SAND with gravel; fine-									
∑15 -		 coarse sand; subangular; 10% small- medium gravel, subangular; medium density; wet; olive gray 	SB-	-2-15			13,16,20	0.0		 Bentonite Cement Mixture 	
20 -					-						
		ML: SILT; nonplastic, no dilatency; trace fine sand; medium stiffness; dry; olive	SB-	-2-20			12,16,20	0.0			
		ML: As above	SB-	-2-25			8,13,14	0.0			
4	1	I	1		I	I	1	1	1 11111111		
NOTES	S: Hand aug	gered to 5' bgs								Page 1 of 2	

THE REYNOLDS G a California corp	ROUP								E LOG
	PR	OJECT INFORMATION				DI	RILLIN	IG INFORMATION	
PROJEC	T:	8204 Blackstone LA		DRILLIN	IG C	0.:		J&H Drilling, Co.	
ADDRES		338 S. Hill Street		RIG TYI	PE:			CME-75	
LOGGED		Patricia Dean		METHO				Hollow Stem Auger	
DATE(S)	DRILLED	: 12/28/15	SAMPLING METHODS: Split Spoon						
		uring drilling completed well RE ⁻	VIE	WED BY: _				APPROVED BY:	
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION		RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
30 -		/ ML: Sandy SILT; nonplastic; very fine-fine sand, subangular; medium stiffness; dry; olive gray	SB	-2-30		8,9,11	0.0		
35									
NOTES:	nanu aug	gered to 5' bgs							Page 2 of 2

												SB-3		
		1	PR	OJECT INFORMATION	, 730	J-04	70					IG INFO		ION
PROJEC	:Т:			8204 Blackstone LA		C	RILL	ING C	20.:					
ADDRES	SS:			338 S. Hill Street		F	RIG TY	YPE:				CME-7	-	
LOGGED	Β١	/ :		Patricia Dean		Ν	/ETH	OD O	F DI	RILLI	NG:	Hollow	Stem Au	ger
DATE(S)	DR	RILL	ED	: 12/28/15		S	SAMP	LING	MET	тног	DS:	Split Sp	oon	
				ring drilling completed well RE	EVIE	WEI	D BY:					APPRC)VED BY	/:
						٤								
DEPTH (feet)	SOIL DESCRIPTION						RECOVERY	SAMPLE		COUNT	PID (ppmv))ring .gram	WELL DESCRIPTION
0_														
_		•		Asphalt	SB	8-3-1					0.0	_		—— Concrete
				SM: Silty SAND, fine sand, subangular, medium density; dry; olive gray; trace										
-		· · ·		small pebbles, subangular	SB	3-3-3	-				0.0	_		
-				SM: As above, dark olive gray										
5-				ML: Sandy SILT, nonplastic; very fine-fine sand with trace medium sand, subangular,	┣		-					-		
-				medium stiffness-soft; dry-moist; reddish	SB	3-3-5			4	4,5,7	0.0			
-	Fu	ITT		brown					#			-		
-				ML: As above, medium stiffness	SB	8-3-7				7,8,8	0.0			
-														
10 -	FUJ	111		ML: As above	SB	-3-10			9.	,13,16	0.0			
					-		┤	╞╧╧╧	Щ <u>́</u>	-, -		-		
				<i>~</i>										
∑15 -	- . .			, SW: Well-graded SAND with gravel; fine-	<u> </u>									
				medium gravel, subangular; trace silt; dense; wet; olive gray	SB	-3-15				50	0.0			Bentonite Cement Mixture
-			•.•.				-					-		
-														
20 -		:			-				-			-		
-				SW: As above	SB	-3-20			15	i,16,26	0.0			
-														
-														
-														
25 -				No Recovery					Ħ					
				,				▦▦	Ħ					
-	I		I		I		I	I	I	I		1		
NOTES:	H	and	aug	ered to 5' bgs										Page 1 of 2

THE REYNOLDS G a California corp	The Reynolds Group Environmental Consulting & Co 520 West 1st Street Tustin, CA 92780 Fx: (714)						FIELD BOREHOLE LOG BOREHOLE NO.: SB-3 TOTAL DEPTH: 30'			
	PR	OJECT INFORMATION					DF	RILLIN	IG INFORMATIC	N
PROJEC	T:	8204 Blackstone LA		D	RILLIN	IG CC	D.:		J&H Drilling, Co.	
ADDRES		338 S. Hill Street		R	IG TYF	PE:			CME-75	
LOGGED		Patricia Dean					DRILLI		Hollow Stem Auge	er
DATE(S)	DRILLED	: 12/28/15		SAMPLING METHODS: Split Spoon						
		uring drilling completed well RE	VIE	WED) BY: _				APPROVED BY:	
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION		SAMPLE IU	RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
30 -		/ / ML: Sandy SILT, nonplastic, no dilatency;								
_		very fine-fine sand; medium stiffness; dry, olive gray	SB	-3-30			15,24,30	0.0	_	
-										
-										
35										
NOTES:	Hand aug	gered to 5' bgs								Page 2 of 2

THE REYNOLDS a California c	GROUP	The Reynolds GreenEnvironmental Consulting & Cons	ont: 730	rac)-539	97		FIELD BOREHOLE LOG BOREHOLE NO.: SB-4 TOTAL DEPTH: 30'				
a California c		OJECT INFORMATION					DI	RILLIN	NG INFORMATION		
PROJE ADDRE		8204 Blackstone LA 338 S. Hill Street			RILLI		0.:		J&H Drilling, Co. CME-75		
LOGGE	ED BY:	Patricia Dean		Ν	1ETH0			ING:	Hollow Stem Auger		
DATE(S	S) DRILLED	: 12/28/15		S	AMPL	ING	METHO	DS:	Split Spoon		
	ater level du		EVIEWED BY: APPROVED BY						APPROVED BY:		
▼ W	ater level in	completed well RE				1					
DEPTH (feet)	(feet) TYPE				RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION	
0		Asphalt		-4-1				0.0		Concrete	
-		SM: Silty SAND, fine sand, subangular, medium density; dry; dark olive gray	. 36	-4-1				0.0			
5-		SP: Poorly-graded SAND with gravel; fine sand, subangular, trace silt; medium density; dry; olive gray; trace oxidized staining	SB	-4-3		+++++++		0.0			
-		ML: SILT with sand, nonplastic, no dilatency; 10% fine sand, subangular;	SB	-4-5			7,8,9	0.0			
	····	ML: As above	SB	-4-7			10,13,15	0.0			
10 -		SW: Well-graded SAND with silt; fine- coarse sand, subangular, 10% silt; trace small gravel,subangular; medium density; dry; olive gray	SB-	-4-10			50	0.0			
-		SW: As above									
15 -		No Recovery								Bentonite Cement Mixture	
		SW: As above; 10% small gravel, subangular; wet	SB-	-4-15			18,25,31	0.0			
20 -		/ SW: As above; trace silt									
		ML: SILT, nonplastic, no dilatency; trace fine sand; medium stiffness; dry; olive gray; trace oxidized staining	SB-	-4-20			35,50/6	0.0			
-											
25 -		ML: As above	SB-	-4-25			16,25,31	0.0			
NOTES	S: Hand aug	jered to 5' bgs								Page 1 of 2	

THE REYNOLDS G a California corp	THE REVNOLDS GROUP a California corporation Tustin, CA 92780 Tustin, CA 9				ting 97	FIELD BOREHOLE LOGBOREHOLE NO.: SB-4TOTAL DEPTH:30'				E LOG
	PR	OJECT INFORMATION					DI	RILLIN	IG INFORMATION	
PROJEC	:T:	8204 Blackstone LA		C	ORILLIN	IG CO	D.:		J&H Drilling, Co.	
ADDRES	SS:	338 S. Hill Street		F	RIG TYI	PE:			CME-75	
LOGGED		Patricia Dean					DRILLI		Hollow Stem Auger	
DATE(S)	DRILLED	: 12/28/15		SAMPLING METHODS: Split Spoon					Split Spoon	
		uring drilling	FVIF	=wei	D BY·				APPROVED BY:	
💌 Wa	ter level in	completed well RI	-							
DEPTH (feet)	SOIL DESCRIPTION			SAMPLE ID	RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
-										
30 -		ML: As above	SB	8-4-30			18,25,32	0.0		
-										
_										
35										
NOTES:	Hand aug	gered to 5' bgs								Page 2 of 2

	^	The Reynolds Gro Environmental Consulting & C			ing	F	FIELD BOREHOLE LOG BOREHOLE NO.: SB-5				
	GROUP	520 West 1st Street Ph: (714) Tustin, CA 92780 Fx: (714)	730)-539	7		-	_	PTH: 30'		
a California co		OJECT INFORMATION	130	-0+7	0					DN	
PROJEC	CT:	8204 Blackstone LA		DI	RILLI	NG CO	D.:		J&H Drilling, Co.		
ADDRE	SS:	338 S. Hill Street	RIG TYPE: CME-75								
LOGGE	D BY:	Patricia Dean		Μ	ETH	DD OF	DRILLI	ING:	Hollow Stem Auge	er	
DATE(S) DRILLED	: 12/29/15		SA	AMPI	ING N	1ETHOI	DS:	Split Spoon		
		uring drilling	-\/IE		<u>, ру</u> ,						
🗶 Wa	ater level in	completed well RE							APPROVED BY:		
DEPTH (feet)	(feet) TYPE				RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION	
0_			1							— Concrete	
-		Asphalt	SB	-5-1				0.0		Controlo	
-		SP: Poorly-graded SAND with silt; fine sand, subangular; 10% silt; trace small gravel, subangular; medium density; dry; olive gray	SB	-5-3				0.0			
5-		SP: As above; trace red brick ML: SILT, nonplastic, no dilatency; trace	SB	-5-5			8,10,15	0.0			
-		fine sand, subangular, trace clay; soft- medium stiffness; dry; brown	<u> </u>								
		ML: As above	SB	-5-7			15,25,32	0.0			
10 -	15252352	SP: Poorly-graded SAND with gravel; fine									
-		with trace medium sand, subangular; trace silt; 10% small-medium gravel; subangular; medium density; dry; olive gray	SB-	5-10			50/6	0.0			
_											
15 -		SP: As above, trace small gravel, subangular									
-	·····	At 11' bgs: As above, large gravel (50mm), subangular	SB-	5-15			30,50	0.0		 Bentonite Cement Mixture 	
-		SP: As above, 10% silt; medium density- dense									
 20		SW: Well-graded SAND with silt; fine- coarse sand, subangular; 10% silt; trace small gravel, subangular, medium density;									
-		moist; olive gray	SB-	5-20			11,13,15	0.0			
-		SW: As above; wet									
25 -		~~									
		SW: As above SM: Silty SAND, fine sand; medium density; dry; olive gray	SB-	5-25			8,12,15	0.0			
NOTES	: Hand aug	jered to 5' bgs								Page 1 of 2	

THE REYNOLDS G a California corp	ROUP								LE LOG
	PR	OJECT INFORMATION				D	RILLIN	IG INFORMATIO	N
PROJEC	T:	8204 Blackstone LA		DRILLI	NG	CO.:		J&H Drilling, Co.	
ADDRES		338 S. Hill Street		RIG TY	PE:			CME-75	
LOGGED		Patricia Dean				OF DRILL		Hollow Stem Auge Split Spoon	r
DATE(S)	DRILLED	: 12/29/15		SAMPL					
		uring drilling completed well	₹EVIE	WED BY:		APPROVED BY: _			
DEPTH (feet)	SUIL DESCRIPTION				SAMPLE	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
30 -		/ ML: SILT with sand; nonplastic, no dilatency; 10% very fine-fine sand; subangular; medium stiffness; dry; olive		J-5-30		8,16,21	0.0		
-		gray				0,10,21			
NOTES:	Hand aug	gered to 5' bgs							Page 2 of 2

	\$	The Reynolds Gr	ou	p			FIELD BOREHOLE LOG				
		Environmental Consulting & Co 520 West 1st Street Ph: (714)					-	-	E NO.: SB-6		
THE REYNOLDS G a California corp	ROUP	Tustin, CA 92780 Fx: (714)				-	ΤΟΤΑ	L DE	PTH: 30'		
	PR	OJECT INFORMATION					D	RILLIN	NG INFORMATI	ON	
PROJEC		8204 Blackstone LA				NG C	D.:		J&H Drilling, Co.		
ADDRES	-	338 S. Hill Street							CME-75		
		Patricia Dean							Hollow Stem Aug	jer	
		: 12/29/15					IETHO	<i>D</i> 3.	Split Spoon		
		ring drilling completed well RE	VIE	NED	OBY:				APPROVED BY	:	
					ž	بر		5			
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE		RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION	
0_											
_	·: ·: ·: ·: ·	Asphalt	SB-	6-1	-			0.0		Concrete	
_		SM: Silty SAND, fine sand, subangular; trace small gravel, subangular; medium									
-		density; dry; reddish brown	SB-	6-3				0.0			
-											
5-		/ ML: SILT, nonplastic, no dilatency; trace fine sand, subangular; medium stiffness- stiff; dry; olive gray; trace organics (twigs)	SB-	6-5			6,12,14	0.0			
-		SW: Gravelly SAND with silt, small-	SB-	6-7			26,50	0.0			
		medium gravels, subangular; fine with trace medium sand, subangular; 10% silt; medium density; dry; olive gray		-							
10-	·····	SW: Well-graded SAND with gravel, fine-	SB-6	6-10			25,35,50	0.0			
-	<u></u>	coarse sand, subangular; 10% small- medium gravel, subangular; trace silt; medium density-dense; dry; olive gray									
_		SP: Poorly-graded SAND with gravel, fine									
15	19949959	sand, subangular; 10% small-medium								Bentonite Cement	
-		gravel, subangular; medium density; moist, olive gray	SB-6	6-15			25,50	0.0		Mixture	
-											
∑20 -		SW: Well-graded SAND with silt, fine-					-				
_		coarse sand; subangular; 10% silt; medium density; wet; olive gray	SB-6	6-20			23,32,40	0.0			
-											
-											
-											
25 -		SW: As above	SB-6	6-25			16,22,27	0.0			
-		ML: SILT with sand, nonplastic, no dilatency; 10% fine sand, subangular, medium stiffness; dry; olive gray									
							I				
NOTES:	Hand aug	ered to 5' bgs								Page 1 of 2	

THE REYNOLDS G a California corp	ROUP	FIELD BOREHOLE LOGtracting 30-5397 30-6476BOREHOLE NO.: SB-6 TOTAL DEPTH:TOTAL DEPTH:										
	PR	OJECT INFORMATION		DRILLING INFORMATION								
PROJEC	T:	8204 Blackstone LA			RILLI	NG C	0.:		J&H Drilling, Co.			
ADDRES		338 S. Hill Street		F	RIG TY	PE:			CME-75			
LOGGED		Patricia Dean					DRILL		Hollow Stem Auger			
DATE(S)	DRILLED	: 12/29/15		S	SAMPL	ING I	NETHO	DS:	Split Spoon			
									APPROVED BY:			
🗶 vva												
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION		SAMPLE ID	RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION		
-												
30 -		ML: As above	SE	8-6-30			14,20,25	0.0				
35												
35												
NOTES:	Hand aug	pered to 5' bgs								Page 2 of 2		

THE REYNOLDS G a California corp	ROUP	The Reynolds GreenEnvironmental Consulting & Cons	o nti 730	act -539	07		FIELD BOREHOLE LOG BOREHOLE NO.: SB-7 TOTAL DEPTH: 30'				
		OJECT INFORMATION)N			
PROJEC	T:	8204 Blackstone LA		D	RILLI	NG C	J&H Drilling, Co.				
ADDRES	SS:	338 S. Hill Street		R	IG TY	PE:	CME-75				
LOGGED		Patricia Dean					DRILL		Hollow Stem Auge	er	
DATE(S)	DRILLED	: 12/29/15		S	AMPL	_ING I	METHO	DS:	Split Spoon		
		uring drilling completed well RE	VIE\	VEC) BY:		APPROVED BY:				
DEPTH (feet)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE ID		RECOVERY	SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION	
0_		Asphalt ,								— Concrete	
-		SM: Sandy SILT, fine sand, subangular; medium stiffness-soft; dry; reddish brown	SB-					0.0			
5-		SP: Poorly-graded SAND with gravel, fine with trace medium sand; subangular; 10% small gravel, subangular, trace silt; medium density; dry; light gray	SB-	7-5			4,5,6	0.0			
-		SP: As above, small-medium with trace large gravel, subangular	SB-	7-7			14,19,24	0.0			
10 -		SW: Well-graded SAND with gravel, fine- coarse sand, subangular; 10% small- medium gravel, subangular; medium density-dense; dry; olive gray	SB-7	7-10			25,50	0.0			
- - 15 -		SP: Poorly-graded SAND with silt, fine sand, subangular; 10% silt, trace small gravel, subangular; medium density; dry, olive gray	SB-7				28,50	0.0	_	— Bentonite Cement Mixture	
-	·····	SW: Well-graded SAND with silt; fine- coarse sand, subangular, 10% silt; medium density; moist; olive gray								MAGIC	
 ∑20		/ SW: Gravelly SAND with silt, fine-coarse sand, subangular; small-medium gravels, subangular; 10% silt; medium density- loose; wet; olive gray	SB-7	7-20			19,29,37	0.0			
25 -		No Recovery	-								
	Hand aug	ered to 5' bgs									

THE REYNOLDS G a California corp	0-539	acting BOREHOLE NO.: SB-7 5397 5397 TOTAL DEPTH: 30'								
	PR	OJECT INFORMATION				N				
PROJEC	T:	8204 Blackstone LA		D	RILLIN	IG CO				
ADDRES			IG TYI				CME-75			
LOGGED		Patricia Dean					DRILLI		Hollow Stem Auge	r
DATE(S)	DRILLED	: 12/29/15		S	AMPL	ING N	/ETHO	DS:	Split Spoon	
		uring drilling completed well RI	EVIE	WED) BY: _				APPROVED BY:	
DEPTH (feet)	SOIL DESCRIPTION					SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION
		/ SM: Silty SAND, very fine-fine sand,								
30 -		subangular; medium density; dry; olive gray	SB	-7-30			16,27,31	0.0		
-										
35										
NOTES	Hand auc	gered to 5' bgs								Page 2 of 2

THE REYNOLDS G a California corp	ROUP	The Reynolds GreeEnvironmental Consulting & C520 West 1st StreetPh: (714)Tustin, CA 92780Fx: (714)	ont i) 730	rac -539	ting 97	E LOG					
a California corp		OJECT INFORMATION					1				
PROJEC	T:	8204 Blackstone LA		D	RILLI	J&H Drilling, Co.					
ADDRES	SS:	338 S. Hill Street		R	RIG TY	PE:			CME-75		
LOGGED	BY:	Patricia Dean		Ν	/ETHC	DD OF	DRILL	ING:	Hollow Stem Auger		
DATE(S)	DRILLED	12/29/15		S	SAMPL	ING N	/ETHOI	DS:	Split Spoon		
		ring drilling completed well RE	EVIE	WE	DBY:	APPROVED BY: _					
DEPTH (feet)	DEPTH SOIL SOIL DESCRIPTION					SAMPLE INTERVAL	BLOW COUNT	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION	
0		Asphalt SM: Silty SAND, very fine-fine sand,	SB	-8-1	-			0.0		- Concrete	
-		subangular; trace small gravel, subangular; medium density; dry; olive gray	SB	-8-3	-			0.0			
5-		[′] ML: Sandy SILT, very fine-fine sand, subangular; medium stiffness; dry; olive gray	SB	-8-5			11,12,14	0.0			
-		SP: Poorly-graded SAND with silt, fine sand, subangular; 10% silt; medium density; dry; olive gray	SB	-8-7			9,11,16	0.0			
10 -	·····	SP: As above	SB-	8-10			27,50	0.0			
-	<u></u>	SW: Well-graded SAND with gravel, fine- coarse sand, subangular; 10% small- medium gravel, subangular; 10% silt; medium density-dense; moist; olive gray									
∑15 - - -		SW: As above; wet	SB-	8-15			50/6	0.0	-	 Bentonite Cement Mixture 	
20 -	רוחזדדרו	 / ML: Sandy SILT, nonplastic, no dilatency; very fine-fine sand, subangular; medium 	\						_		
-		stiffness; dry; olive gray	SB-	7-20			19,28,32	0.0			
25 -		ML: As above	SB-	8-25			16,24,29	0.0			
NOTES:	NOTES: Hand augered to 5' bgs Page 1 of 2										

The Reynolds Group The NoLDS GROUP a California corporation Tustin, CA 92780 Tustin, CA 92780 Tustin, CA 92780						rac)-53	BOREHOLE NO.: SB-8							
			PF	ROJECT INFORMATION		DRILLING INFORMATION								
PROJECT: 8204 Blackstone LA							ORILLI	NG C	J&H Drilling, Co.					
	ADDRESS: 338 S. Hill Street						RIG TY	PE:			CME-75			
LOGGE				Patricia Dean						LING:	Hollow Stem Auger			
DATE(S)	D	RIL	LE): 12/29/15		5	SAMPL	ING	METH	ODS:	Split Spoon			
							D BY:				APPROVED BY:			
DEPTH (feet)	DEPTH SOIL SOIL DESCRIPTION					SAMPLE IU	RECOVERY	SAMPLE	BLOW	PID (ppmv)	BORING DIAGRAM	WELL DESCRIPTION		
-														
30 -			ĪŢſ	ML: As above	SB	-8-30			17,20,3	25 0.0				
-														
NOTES	:	Han	d au	igered to 5' bgs								Page 2 of 2		

APPENDIX C

DATA SUMMARY TABLES

TABLE 1 SUMMARY OF SOIL VAPOR ANALYTICAL RESULTS 338 S. HILL STREET LOS ANGELES, CALIFORNIA

					-		Results in	Micrograms	per Liter (ug/l	.)			
Sample ID	Sample Date	Sample Depth (ft bgs)	PCE	TCE	Cis-1,2-DCE	trans-1,2-DCE	VC	Toluene	Xylenes	1,1-DCA	1,1-DCE	1,1,1-TCA	Other VOCs
SV-1	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-2	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-3	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-4	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-5	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-6	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-7	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-8	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-9	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-10	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-11	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-12	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SV-12-DUP	12/23/2015	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
US EPA RSL Resid	dential (µg/L)		11	0.48			0.17	5,200	100	1.8	210	5,200	Various
DTSC HERO Note	e 3 Future Resident	ial (μg/L)	0.41		7.3		0.031	313		1.52	73	1,040	Various

Notes:

VOCs- volatile organic compounds

ft bgs - feet below ground surface

µg/L - micrograms per liter

-- - not applicable, no value

BDL - below detection level

PCE - perchloroethene (tetrachloroethene)

TCA - trichloroethane

TCE - trichloroethene

DCA - dichloroethane

VC - vinyl chloride

US EPA RSL - United States Environmental Protection Agency Regional Screening Level

DTSC HERO - Department of Toxic Substances Control Human and Ecological Risk Office

Future Residential attenuation factor = 0.001

					SUMMARY		ALYTICAL R 338 S. H	IBLE 2 ESULTS - HYDR IILL STREET ES, CALIFORNIA	OCARBONS AND	D VOCS				
				troleum Hydro 8015M Results in mg/k			-		VO	Cs by 8260E	3 (Resuls in μg/k	g)	-	
Boring	Sample Date	Depth (ft bgs)	C4-C12	C13-C22	C23-C40	PCE	TCE	Cis-1,2-DCE	trans-1,2-DCE	vc	Toluene	1,1-DCE	1,1,1-TCA	Other VOCs
		5	BDL	BDL	BDL									
		10	BDL	BDL	BDL									
SB1	12/28/2015	15	BDL	BDL	BDL									
301	12/20/2015	20	BDL	BDL	BDL									
		25	BDL	BDL	BDL									
	ļ	30	BDL	BDL	BDL									
		5	BDL	BDL	BDL									
		10 15	BDL BDL	BDL BDL	BDL BDL									
SB2	12/28/2015	20	BDL	BDL	BDL									
		25	BDL	BDL	BDL									
		30	BDL	BDL	BDL									
		5				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		10				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
SB3	12/28/2015	15				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		20				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		30				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		5 10	BDL BDL	BDL BDL	BDL BDL									
		16.5	BDL	BDL	BDL									
SB4	12/28/2015	20	BDL	BDL	BDL									
		25	BDL	BDL	BDL									
		30	BDL	BDL	BDL									
		5	BDL	BDL	BDL									
		10	BDL	BDL	BDL									
SB5	12/29/2015	15	BDL	BDL	BDL									
		20 30	BDL	BDL	BDL									
			BDL	BDL	BDL	BDL	BDL	 BDL	BDL	BDL	BDL	 BDL	BDL	
		5 10				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL All BDL
		15				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
SB6	12/29/2015	20				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		25				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		30				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		5				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
or -	10/00/1	10				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
SB7	12/29/2015	15				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		20 30				BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	All BDL All BDL
		30				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		10				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		10				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
SB8	12/29/2015	20				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		25				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
		30				BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL
US EPA RSL I						24,000	940	160,000	1,600,000	59	4,900,000	230,000	230,000	
DTSC HERO	Note 3 Residentia	1				480								

Notes:

ft bgs - feet below ground surface VOCs- volatile organic compounds

mg/kg - miligrams per kilogram µg/kg - micrograms per kilogram -- not applicable, no value BDL - below detection level

PCE - perchloroethene (tetrachloroethene) DCE - dichloroethene

TCA - trichloroethane TCE - trichloroethane

VC - vinyl chloride US EPA RSL = United States Environmental Protection Agency Regional Screening Level DTSC HERO = Department of Toxic Substances Control Human and Ecological Risk Office

TABLE 3 SUMMARY OF SOIL ANALYTICAL RESULTS - METALS 338 S. HILL STREET LOS ANGELES, CALIFORNIA

						Metals by	EPA Metho	d 6010/747	'1 (mg/kg)				EPA Method	6010 (mg/L)
Boring	Sample Date	Depth (ft bgs)	Arsenic	Barium	Cobalt	Chromium	Copper	Nickel	Lead	Vanadium	Zinc	Other Metals	Lead STLC	Lead TCLP
		1	2	82	5	6	12	5	3	13	25	All BDL		
		3	BDL	67	4	6	11	5	2	13	22	All BDL		
SB1	12/28/2015	5	BDL	56	3	8	7	6	2	12	19	All BDL		
		7	BDL	72	5	6	5	6	2	15	39	All BDL		
		10	BDL	77	5	8	12	7	3	18	32	All BDL		
		1	BDL	137	8	16	17	14	38	24	92	All BDL		
		3	2	3,376	7	23	17	8	5,668	17	1,805	All BDL	179	5.5
SB2	12/28/2015	5	BDL	195	9	15	18	11	106	26	100	All BDL	2.6	<0.1
		7	BDL	55	10	20	16	15	6	39	48	All BDL		
		10	BDL	67	5	10	9	7	2	20	25	All BDL		
		1	BDL	134	6	10	13	7	93	20	62	All BDL	4.0	<0.1
		3	3	107	3	7	47	7	71	18	118	All BDL		
SB3	12/28/2015	5	BDL	174	11	21	16	15	4	35	42	All BDL		
		7	BDL	189	7	16	13	11	3	26	38	All BDL		
		10	BDL	34	3	8	6	4	3	12	21	All BDL		
		1	BDL	92	7	9	13	7	3	18	40	All BDL		
		3	BDL	60	4	14	17	6	11	17	35	All BDL		
SB4	12/28/2015	5	BDL	127	8	16	16	13	4	27	36	All BDL		
		7	BDL	85	6	14	11	10	3	24	33	All BDL		
		10	BDL	70	3	6	7	5	1	12	19	All BDL		
		1	BDL	108	7	13	15	11	7	23	57	All BDL		
		3	BDL	146	5	10	15	7	97	18	59	All BDL	3.8	0.2
SB5	12/29/2015	5	BDL	120	7	19	14	12	2	31	38	All BDL		
		7	BDL	102	5	11	12	7	57	18	40	All BDL		
		10	BDL	99	8	6	9	5	3	24	34	All BDL		
		1	BDL	181	12	27	17	17	10	47	55	All BDL		
		3	2	147	8	20	42	12	94	31	100	All BDL	4.9	0.1
SB6	12/29/2015	5	BDL	122	9	23	16	14	6	37	42	All BDL		
		7	BDL	51	4	8	8	6	2	15	21	All BDL		
		10	BDL	67	5	2	3	3	1	12	34	All BDL		

TABLE 3 SUMMARY OF SOIL ANALYTICAL RESULTS - METALS 338 S. HILL STREET LOS ANGELES, CALIFORNIA

						Metals by	EPA Metho	d 6010/747	'1 (mg/kg)				EPA Method	6010 (mg/L)
Boring	Sample Date	Depth (ft bgs)	Arsenic	Barium	Cobalt	Chromium	Copper	Nickel	Lead	Vanadium	Zinc	Other Metals	Lead STLC	Lead TCLP
		1	BDL	202	6	14	14	8	142	21	150	All BDL	6.3	0.2
		3	BDL	186	9	18	38	12	175	31	177	All BDL	6.8	0.1
SB7	12/29/2015	5	1	331	3	22	4	2	185	7	238	All BDL	0.9	0.2
		7	BDL	62	5	8	9	6	4	17	42	All BDL		
		10	BDL	135	11	9	13	10	5	25	64	All BDL		
		1	BDL	178	8	22	38	14	4,852	34	195	All BDL	174	6.4
		3	BDL	143	8	17	21	13	55	28	90	All BDL		
SB8	12/29/2015	5	BDL	163	9	21	16	14	4	35	45	All BDL		
		7	BDL	132	9	17	12	12	3	32	41	All BDL		
		10	BDL	70	6	10	10	7	4	20	32	All BDL		
US EPA RSL	. Residential		0.67	15,000	23	120,000	3,100	1,500	400	390	23,000			
DTSC HERO) Note 3 Resider	ntial	0.062						80					
Background	d Concentration	is	<12	<509	<14.9	<122	<28.7	<57	<48.5	<24.3	<149			
CA Title 22	Regulatory Lim	its											5	5

Notes:

ft bgs - feet below ground surface

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

BDL - below detection level

Denotes concentrations in excess of one or more applicable screening levels and expected background concentrations

Highlighted cells denote concentrations in excess of one or more applicable screening level and expected background concentration

Bold values denote detectable concentrations

-- - not applicable, no value

US EPA RSL - United States Environmental Protection Agency Regional Screening Level January 2015

DTSC HERO Note 3 = Department of Toxic Substances Control Human and Ecological Risk Office

Background concentrations of Trace and Major Elements in California Soils dated March 1996; arsenic background concentration derived from DTSC

Determination of a Southern California Regional Background Arsenic Concentration in Soil

TCLP = Toxicity Characteristic Leaching Procedure

STLC = Soluble Threshold Limit Concentrations

STLC and TCLP regulatory limit for waste management derived from the California Code of Regulations, Title 22, Chapter 11, Article 3

					SUN	-	338 9	TABLE 4 IDWATER 5. HILL ST ELES, CAL	REET	CAL RESU	ILTS						
		E	TPH PA 8015N (ug/L)	И				VOCs EPA 8260 (ug/L))						olved Mo EPA 6010 (ug/L)		
Sample ID	Sample Date	C4-C12	C13-C22	C23-C40	Benzene	Ethylbenzene	Toluene	Total Xylenes	Cyclohexane	Methylcyclohexane	lsopropylbenzene	Other VOCs	Barium	Chromium	Molybdenum	Zinc	Other Metals
SB-2-GW	SB-2-GW 12/28/2015 BDL										BDL	119	15	20	116	All BDL	
SB-4-GW 12/28/2015 BDL BDL BDL BDL BDL BDL BDL BDL BDL 119							9	16	91	All BDL							
SB-5-GW	12/29/2015	0.5	BDL	BDL	6.2	10.3	2.7	80.5	1.0	2.3	1.8	BDL	73	BDL	BDL	106	All BDL
CA MCL					1.0	300	150	1,750				Various	1,000	50		5,000*	

Notes:

GW - groundwater

ug/L - micrograms per liter

TPH - Total Petroleum Hydrocarbons

EPA - Environmental Protection Agency

VOCs- volatile organic compounds

PCBs - polychlorinated biphenyls

BOD - Biochemical Oxygen Demand

-- - not applicable, no value

BDL - below detection level

Bold values denote detectable concentrations

Denotes concentrations in excess of CA MCL

CA MCL - California Maximum Contaminant Level

*Secondary CA MCL

TABLE 5

										SUN	-	338 S	TERING AN . HILL STRI ELES, CALII	EET	AL RESUL	rs									
					VOCs EPA 8260 (ug/L))				EPA 8270 (ug/L)		Diss	olved Me EPA 6010B (ug/L)	tals		EPA 8082 (mg/L)	EPA 8081A (mg/L)	SM 5210B (mg/L)	EPA 1664A (mg/L)	SM 4500- C1F (mg/L)	SM 5540C (mg/L)	EPA 8270C (mg/L)	SM 2540F (mg/L)	SM 2540C (mg/L)	SM 4500 S2D (mg/L)
Sample ID	Sample Date	Benzene	Ethylbenzene	Toluene	Total Xylenes	Cyclohexane	Methylcyclohexane	lsopropylbenzene	Other VOCs	svocs	Barium	Chromium	Molybdenum	Zinc	Other Metals	PCBs	Pesticides	BOD	Oil/Grease	Chlorine	Surfatants (MBAS)	Phenols	Setttleable Solids	Total Suspended Solids	Sulfides
SB-2-GW	12/28/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL	119	15	20	116	All BDL	All BDL	All BDL	BDL	BDL	BDL	0.13	BDL	42	555	BDL
SB-4-GW	12/28/2015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	All BDL	119	9	16	91	All BDL	All BDL	All BDL	BDL	BDL	BDL	0.14	BDL	93	625	BDL
SB-5-GW	12/29/2015	6.2	10.3	2.7	80.5	1.0	2.3	1.8		All BDL	73	BDL	BDL	106	All BDL	All BDL	All BDL	1.9	BDL	BDL	BDL	BDL	0.20	1,060	BDL
LARWQCB M	,	1.0	700	150	1,750				Various			16			Various		Various	30	15	0.1	0.5	1.0	0.3	75	1.0
LARWQCB Av	erage Monthly								Various	Various		8			Various	Various	Various	20	10				0.1	50	

Notes:

GW - groundwater

ug/L - micrograms per liter

mg/L - milligrams per liter

TPH - Total Petroleum Hydrocarbons

EPA - Environmental Protection Agency

VOCs- volatile organic compounds

PCBs - polychlorinated biphenyls

BOD - Biochemical Oxygen Demand

-- - not applicable, no value

BDL - below detection level

Bold values denote detectable concentrations

Denotes concentrations in excess of LARWQCB Daily

Denotes concentrations in excess of LARWQCB Average Monthly

LARWQCB - Los Angeles Water Quality Control Board

APPENDIX D

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

January 14, 2016

ELAP Certificate No: 2268

Ms. Patricia Dean The Reynolds Group 520 West 1st St. Tustin, CA 92780

Project:8204 BlackstoneC&E ID:151228E

Dear Ms. Dean,

Enclosed is an analytical report for the sample(s) received by Chemical & Environmental Laboratories, Inc. on December 28, 2015, and analyzed as indicated in the chain-of-custody attached.

Unless otherwise noted, no problems were encountered during receiving, preparation and analysis of these samples.

Please call me at (562) 926-8091 if you have any questions regarding this report.

Sincerely,

Lang 3hy

Larry Zhang, Ph.D. Laboratory Director

ANALYTICAL REPORT

--- 8015M (Hydrocarbon Characterization) ---

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil					Date A Date F	Sampled: Analyzed: Reported: Reported:	12/28/ 12/29/ 01/05/ mg/kg	/15
C&E LAB ID	SAMPLE ID	DF	C ₄ -C	12	C ₁₃ -0	C ₂₂	C ₂₃ -C	40	%Surrogate
		DI	Result	RL	Result	RL	Result	RL	(70-130)
151228E-3	SB-1-5	1	ND	0.1	ND	1	ND	50	100
151228E-5	SB-1-10	1	ND	0.1	ND	1	ND	50	101
151228E-6	SB-1-15	1	ND	0.1	ND	1	ND	50	113
151228E-7	SB-1-20	1	ND	0.1	ND	1	ND	50	105
151228E-8	SB-1-25	1	ND	0.1	ND	1	ND	50	107
151228E-9	SB-1-30	1	ND	0.1	ND	1	ND	50	106
151228E-12	SB-2-5	1	ND	0.1	ND	1	ND	50	107
151228E-14	SB-2-10	1	ND	0.1	ND	1	ND	50	109
151228E-15	SB-2-15	1	ND	0.1	ND	1	ND	50	111
151228E-16	SB-2-20	1	ND	0.1	ND	1	ND	50	110
151228E-17	SB-2-25	1	ND	0.1	ND	1	ND	50	109
151228E-18	SB-2-30	1	ND	0.1	ND	1	ND	50	107

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	ynolds Grou Dean ackstone	up					Date Samp Date Analy Date Repor Unit Repor	/zed: rted:	12/28/15 12/29/15 12/30/15 mg/kg or p	pm
C&E LAB II)	151228	3E-1	151228	3E-2	151228	3E-3	151228	3E-4	151228	3E-5
SAMPLE ID)	SB-1	-1	SB-1	-3	SB-1	-5	SB-1	-7	SB-1-	-10
DF		1		1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	2	1	ND	1	ND	1	ND	1	ND	1
Barium (Ba)	6010B	82	1	67	1	56	1	72	1	77	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	6	1	6	1	8	1	6	1	8	1
Cobalt (Co)	6010B	5	1	4	1	3	1	5	1	5	1
Copper (Cu)	6010B	12	1	11	1	7	1	5	1	12	1
Lead (Pb)	6010B	3	1	2	1	2	1	2	1	3	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	5	1	5	1	6	1	6	1	7	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	13	1	13	1	12	1	15	1	18	1
Zinc (Zn)	6010B	25	1	22	1	19	1	39	1	32	1

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	vnolds Grou Dean ackstone	ıp					Date Samp Date Analy Date Repor Unit Repor	yzed: rted:	12/28/15 12/29/15 12/30/15 mg/kg or p	pm
C&E LAB II)	151228	E-10	151228	E-11	151228	E-12	151228	E-13	151228	E-14
SAMPLE ID)	SB-2	-1	SB-2	-3	SB-2	-5	SB-2	-7	SB-2-	-10
DF		1		1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	ND	1	2	1	ND	1	ND	1	ND	1
Barium (Ba)	6010B	137	1	3376	1	195	1	55	1	67	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	16	1	23	1	15	1	20	1	10	1
Cobalt (Co)	6010B	8	1	7	1	9	1	10	1	5	1
Copper (Cu)	6010B	17	1	17	1	18	1	16	1	9	1
Lead (Pb)	6010B	38	1	5668	1	106	1	6	1	2	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	14	1	8	1	11	1	15	1	7	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	24	1	17	1	26	1	39	1	20	1
Zinc (Zn)	6010B	92	1	1805	1	100	1	48	1	25	1

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name:	The Re	ynolds Group			Date Sampled:	12/28/15
Project Manager:	Patricia	Dean			Date Analyzed:	12/29/15
Project Name:	8204 B	lackstone			Date Reported:	12/30/15
Sample Matrix:	Soil				Unit Reported:	mg/kg or ppm
C&E LAB I	D	151228E-19	151228E-20			
SAMPLE I	D	SB-3-1	SB-3-3			
DF		1	1			
		· · · ·		·	·	·

COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2						
Arsenic (As)	6010B	ND	1	3	1						
Barium (Ba)	6010B	134	1	107	1						
Beryllium (Be)	6010B	ND	1	ND	1						
Cadmium (Cd)	6010B	ND	0.5	ND	0.5						
Chromium (Cr)	6010B	10	1	7	1						
Cobalt (Co)	6010B	6	1	3	1						
Copper (Cu)	6010B	13	1	47	1						
Lead (Pb)	6010B	93	1	71	1						
Mercury (Hg)	7471	ND	0.1	ND	0.1						
Molybdenum (Mo)	6010B	ND	1	ND	1						
Nickel (Ni)	6010B	7	1	7	1						
Selenium (Se)	6010B	ND	2	ND	2						
Silver (Ag)	6010B	ND	1	ND	1						
Thallium (Tl)	6010B	ND	2	ND	2						
Vanadium (V)	6010B	20	1	18	1						
Zinc (Zn)	6010B	62	1	118	1						

QC REPORT

--- 8015M (Diesel) ---

I. Laboratory Control Sample

Date Analyzed: 12/29/15 LCS ID: TPH151229LC

ANALYTE	LCS %	ACP %CL
Diesel	115	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch : TPH151229MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
Diesel	100	89	12	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

Unit: mg/kg

COMPOUND	REPORTING LIMIT	RESULT
Diesel	1	ND

Surrogate Compounds	% Surr. Rec. (70-130)
BFB	121

QC REPORT

---- EPA 6010B (Metalsl) ----

I. Laboratory Control Sample

Date Analyzed: 12/29/15 LCS ID: MET151229LC

ANALYTE	LCS %	ACP %CL
Arsenic	110	70-130
Selenium	114	70-130
Cadmium	112	70-130
Lead	110	70-130
Barium	116	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch #: MET151229MS

ANALYTE	MS %	MSD %	RPD	ACP %CL	ACP RPD
Arsenic	109	108	1	70-130	20
Selenium	109	108	1	70-130	20
Cadmium	110	108	2	70-130	20
Lead	111	110	1	70-130	20
Barium	111	109	2	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

	REPORTING	
COMPOUND	LIMIT	RESULT
Antimony (Sb)	2	ND
Arsenic (As)	1	ND
Barium (Ba)	1	ND
Berryllium (Be)	1	ND
Cadmium (Cd)	0.5	ND
Chromium (Cr)	1	ND
Cobalt (Co)	1	ND
Copper (Cu)	1	ND
Lead (Pb)	1	ND

	REPORTING							
COMPOUND	LIMIT	RESULT						
Molybdenum (Mo)	1	ND						
Nickel (Ni)	1	ND						
Selenium (Se)	2	ND						
Silver (Ag)	1	ND						
Thallium (Tl)	2	ND						
Vanadium (V)	1	ND						
Zinc (Zn)	1	ND						

Unit: mg/kg

CHAIN OF CUSTODY RECORD

C & E LABOR	ATORIE	S, INC.											AB 10	SE	
3824 Bentley Plac	ce, Cerritos, C	CA 90703		Tel: (562) 926	-8091		Fax: (50	52) 926-5	5940	200					
Company Na	me:	The Rey	nolds Gro	oup	Site A	ddress:	338 S. HILL ST.				P	age	1 of	3	
Project Manag	ger:	PATRICI	A DEAN				LOS ANGELES, CA					Sample Conditions			
Project No./Na			CLACKSTON	VE			and -					x Chilled Seals			s Intact
Tel: 714-73	80-5397		714-730-		Samp	led By:	PDICL				Turn	Turn Around Time Desir		esired	
			SAWFLE	R.	1990							Norma	Same	Day / 24	nr / 48h
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	MATRIX (air/soil/water	NO. OF CONTAINERS/ TYPE	8015M TPH-G	8015M TPH-D	8021B BTEX MTBE	TAH8.9	8260B BTEX OXY.	8260B VOC	CAM METALS	8270C SVOC	6010B LEAD		
SB1-1	12/28/15	0730	SOIL	Sleeve							X		X		1
5B-1-3	and and and a	0738	1								X	- wax	X		
58-1-5		0824				14102		X			X		X		
58-1-7		0825			199			1	21.06		X		X	5.03	
58-1-10		0833						X	1.5		X				
SB-1-15		0840						X							
58-1-20		0843						X	-	He I	and the second	250			
SB -1-25		0847						×			1919				
SB-1-30	1	0852			3		1.12	\star			N. N. N.				
03-2-1		0925									X				
53-2-3		0928							1	S.C.S	X				
SB-2-5		0931						X			X				
SB-2-7		0938									×				
58-2-10	1	0943						X			X				
00-2-15		0951		·				X			1975				
DB-2-15 B-2-20		0955						X		20			1.1		
5B-2-25		0959						X				2			
SB-2-30		1005			and is			X							
58-3-1		1050	Y	sleepe							X				
53-3-3	1/28/15	1053	50.1	deeve	Sec.		G.				X			1	
Vato Du		Date/Tim	e: 5 1713	Received By:	Date/Time: EDF Required: (circle) Yes					No					
Relinquished By:		Date/Tim		Received By:				e/Time:	1	Com	ments:	No.	and the second s		

January 14, 2016

ELAP Certificate No: 2268

Ms. Patricia Dean The Reynolds Group 520 West 1st St. Tustin, CA 92780

Project:8204 BlackstoneC&E ID:151228F

Dear Ms. Dean,

Enclosed is an analytical report for the sample(s) received by Chemical & Environmental Laboratories, Inc. on December 28, 2015, and analyzed as indicated in the chain-of-custody attached.

Unless otherwise noted, no problems were encountered during receiving, preparation and analysis of these samples.

Please call me at (562) 926-8091 if you have any questions regarding this report.

Sincerely,

Lang 3hy

Larry Zhang, Ph.D. Laboratory Director

ANALYTICAL REPORT

--- 8015M (Hydrocarbon Characterization) ---

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil	Date Analyze Date Reported Unit Reported				Analyzed: Reported:	01/05/16 mg/kg or ppm		
C&E LAB ID	SAMPLE ID	DF	C ₄ -C	12	C ₁₃ -0	C ₂₂	C ₂₃ -C	-40	%Surrogate
		DI	Result	RL	Result	RL	Result	RL	(70-130)
151228F-9	SB-4-5	1	ND	0.1	ND	1	ND	50	116
151228F-11	SB-4-10	1	ND	0.1	ND	1	ND	50	116
151228F-12	SB-4-16.5	1	ND	0.1	ND	1	ND	50	119
151228F-13	SB-4-20	1	ND	0.1	ND	1	ND	50	118
151228F-14	SB-4-25	1	ND	0.1	ND	1	ND	50	124
151228F-15	SB-4-30	1	ND	0.1	ND	1	ND	50	123

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Client Name:The ReynolProject Manager:Patricia DeaProject Name:8204 BlacksSample Matrix:SoilC&E LAB IDSAMPLE IDDF	an stone 151228	Image: Second state Image: Second state					Date Sampled: Date Analyzed: Date Reported: Unit Reported: 151228F-5 SB-3-20 1		12/28/15 12/29/15 01/05/16 μg/kg or ppb 151228F-6 SB-3-30 1	
COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone	ND	5	ND	5	ND	5	ND	5	ND	5
Benzene	ND	1	ND	1	ND	1	ND	1	ND	1
Bromodichloromethane	ND	2	ND	2	ND	2	ND	2	ND	2
Bromoform	ND	5	ND	5	ND	5	ND	5	ND	5
Bromomethane	ND	2	ND	2	ND	2	ND	2	ND	2
2-Butanone (MEK)	ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Disulfide	ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Tetrachloride	ND	2	ND	2	ND	2	ND	2	ND	2
Chlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
Chloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
Chloroform	ND	2	ND	2	ND	2	ND	2	ND	2
Chloromethane	ND	5	ND	5	ND	5	ND	5	ND	5
Cyclohexane	ND	2	ND	2	ND	2	ND	2	ND	2
Dibromochloromethane	ND	5	ND	5	ND	5	ND	5	ND	5
1,2-Dibromo-3-Chloropropane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dibromoethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
1,3-Dichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
1,4-Dichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
Dichlorodifluoromethane	ND	5	ND	5	ND	5	ND	5	ND	5
1,1-Dichloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,1-Dichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
cis-1,2-Dichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
trans-1,2-Dichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloropropane	ND	2	ND	2	ND	2	ND	2	ND	2

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

Project Manager: F Project Name: 8	The Reynold Patricia Dear 3204 Blackst Soil	1		Date Samp Date Analy Date Repo Unit Report	yzed: rted:	12/28/15 12/29/15 01/05/16 μg/kg or ppb					
C&E LAB I	D	151228	F-1	151228	F-3	151228	F-4	151228	F-5	151228	F-6
SAMPLE II	D	SB-3-5		SB-3-	10	SB-3-	15	SB-3-2	20	SB-3-	30
DF		1		1		1		1		1	
COMPOUN	D	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
trans-1,3-Dichloroprop	bene	ND	2	ND	2	ND	2	ND	2	ND	2
cis-1,3-Dichloroproper	ne	ND	2	ND	2	ND	2	ND	2	ND	2
Ethylbenzene		ND	1	ND	1	ND	1	ND	1	ND	1
2-Hexanone		ND	2	ND	2	ND	2	ND	2	ND	2
Methyl Acetate		ND	2	ND	2	ND	2	ND	2	ND	2
Methylcyclohexane		ND	2	ND	2	ND	2	ND	2	ND	2
Methylene Chloride		ND	2	ND	2	ND	2	ND	2	ND	2
4-Methyl-2-Pentanone	;	ND	2	ND	2	ND	2	ND	2	ND	2
Styrene		ND	2	ND	2	ND	2	ND	2	ND	2
Isopropylbenzene		ND	2	ND	2	ND	2	ND	2	ND	2
4-Isopropyltoluene		ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2,2-Tetrachloroeth	ane	ND	2	ND	2	ND	2	ND	2	ND	2
Tetrachloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
Toluene		ND	1	ND	1	ND	1	ND	1	ND	1
1,2,4-Trichlorobenzen	e	ND	2	ND	2	ND	2	ND	2	ND	2
1,1,1-Trichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
Trichloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
Trichlorofluoromethan	ne	ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichlorotrifluor	oethane	ND	2	ND	2	ND	2	ND	2	ND	2
Vinyl Chloride		ND	5	ND	5	ND	5	ND	5	ND	5
Total Xylenes		ND	1	ND	1	ND	1	ND	1	ND	1
Surrogate Comp	ounds				% Surr	ogate Reco	very (70-130)			
Dibromofluoromethan	e	108		111		114	114			98	
1,2-Dichloroethane-d4	L .	117		128		126	126		114 114		
Toluene-D8		97		104		103		94		101 102	
4-Bromofluorobenzen	e	95		103		84		101		105	

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	ynolds Grou Dean ackstone	up				Date Samp Date Analy Date Repor Unit Repor	yzed: rted:	12/28/15 12/29/15 12/30/15 mg/kg or ppm		
C&E LAB II)	151228F-1		151228	151228F-2		151228F-3		3F-7	151228	8F-8
SAMPLE ID)	SB-3	-5	SB-3	-7	SB-3-	-10	SB-4	-1	SB-4	-3
DF		1		1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Barium (Ba)	6010B	174	1	189	1	34	1	92	1	60	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	21	1	16	1	8	1	9	1	14	1
Cobalt (Co)	6010B	11	1	7	1	3	1	7	1	4	1
Copper (Cu)	6010B	16	1	13	1	6	1	13	1	17	1
Lead (Pb)	6010B	4	1	3	1	3	1	3	1	11	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	15	1	11	1	4	1	7	1	6	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	35	1	26	1	12	1	18	1	17	1
Zinc (Zn)	6010B	42	1	38	1	21	1	40	1	35	1

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	vnolds Grou Dean ackstone	ıp					Date Samp Date Analy Date Repor Unit Repor	zed: ted:	12/28/15 12/29/15 12/30/15 mg/kg or pj	om
C&E LAB II)	151228	3F-9	151228	F-10	151228	F-11				
SAMPLE ID)	SB-4	-5	SB-4	-7	SB-4-	-10				
DF		1		1		1					
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2				
Arsenic (As)	6010B	ND	1	ND	1	ND	1				
Barium (Ba)	6010B	127	1	85	1	70	1				
Beryllium (Be)	6010B	ND	1	ND	1	ND	1				
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5				
Chromium (Cr)	6010B	16	1	14	1	6	1				
Cobalt (Co)	6010B	8	1	6	1	3	1				
Copper (Cu)	6010B	16	1	11	1	7	1				
Lead (Pb)	6010B	4	1	3	1	1	1				
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1				
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1				
Nickel (Ni)	6010B	13	1	10	1	5	1				
Selenium (Se)	6010B	ND	2	ND	2	ND	2				
Silver (Ag)	6010B	ND	1	ND	1	ND	1				
Thallium (Tl)	6010B	ND	2	ND	2	ND	2				
Vanadium (V)	6010B	27	1	24	1	12	1				
Zinc (Zn)	6010B	36	1	33	1	19	1				

QC REPORT

--- 8015M (Diesel) ---

I. Laboratory Control Sample

Date Analyzed: 12/29/15 LCS ID: TPH151229LC

ANALYTE	LCS %	ACP %CL
Diesel	115	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch : TPH151229MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
Diesel	100	89	12	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

Unit: mg/kg

COMPOUND	REPORTING LIMIT	RESULT
Diesel	1	ND

Surrogate Compounds	% Surr. Rec. (70-130)
BFB	121

QC REPORT

---- EPA 8260B (VOC) ----

I. Laboratory Control Sample

Date Analyzed: 12/29/15

LCS ID: VOC151229LC

ANALYTE	LCS %	ACP %CL
1,1-Dichloroethene	115	70-130
Benzene	95	70-130
Trichloroethene	110	70-130
Toluene	105	70-130
Chlorobenzene	100	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch:

VOC151229MS

Reporting

Limit

5

1

2

2

2

2

2

2

2

2

2

5

2

2

2

2

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
1,1-Dichloroethene	115	110	4	70-130	20
Benzene	95	90	5	70-130	20
Trichloroethene	115	100	14	70-130	20
Toluene	110	100	10	70-130	20
Chlorobenzene	100	95	5	70-130	20

III. Method Blank

COMPOUND

Bromodichloromethane

Acetone

Benzene

Bromoform

Bromomethane

2-Butanone (MEK)

Carbon Tetrachloride

Dibromochloromethane

1,2-Dibromoethane

1,2-Dibromo-3-Chloropropane

Carbon Disulfide

Chlorobenzene

Chloromethane

Cyclohexane

Chloroethane

Chloroform

Date Analyzed: 12/29/15

RESULT	COMPOUND	Reporting Limit	RESULT
ND	1,2-Dichlorobenzene	2	ND
ND	1,3-Dichlorobenzene	2	ND
ND	1,4-Dichlorobenzene	2	ND
ND	Dichlorodifluoromethane	2	ND
ND	1,1-Dichloroethane	2	ND
ND	1,2-Dichloroethane	2	ND
ND	1,1-Dichloroethene	2	ND
ND	cis-1,2-Dichloroethene	2	ND
ND	trans-1,2-Dichloroethene	2	ND
ND	1,2-Dichloropropane	2	ND
ND	trans-1,3-Dichloropropene	2	ND
ND	cis-1,3-Dichloropropene	2	ND
ND	Ethylbenzene	1	ND
ND	2-Hexanone	2	ND
ND	Methyl Acetate	2	ND
ND	Methylcyclohexane	2	ND

COMPOUND	Reporting Limit	RESULT
Methylene Chloride	2	ND
4-Methyl-2-Pentanone	2	ND
Styrene	2	ND
Isopropylbenzene	2	ND
4-Isopropyltoluene	2	ND
1,1,2,2-Tetrachloroethane	2	ND
Tetrachloroethene	2	ND
Toluene	1	ND
1,2,4-Trichlorobenzene	2	ND
1,1,1-Trichloroethane	2	ND
1,1,2-Trichloroethane	2	ND
Trichloroethene	2	ND
Trichlorofluoromethane	2	ND
1,1,2-Trichlorotrifluoroethane	2	ND
Vinyl Chloride	5	ND
Total Xylenes	1	ND

Surrogate Compounds	% Surr. Rec. (70-130)
Dibromofluoromethane	93
1,2-Dichloroethane-d4	83
Toluene-D8	108
4-Bromofluorobenzene	90

Unit: µg/kg

QC REPORT

---- EPA 6010B (Metalsl) ----

I. Laboratory Control Sample

Date Analyzed: 12/29/15 LCS ID: MET151229LC

ANALYTE	LCS %	ACP %CL
Arsenic	110	70-130
Selenium	114	70-130
Cadmium	112	70-130
Lead	110	70-130
Barium	116	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch #: MET151229MS

ANALYTE	MS %	MSD %	RPD	ACP %CL	ACP RPD
Arsenic	109	108	1	70-130	20
Selenium	109	108	1	70-130	20
Cadmium	110	108	2	70-130	20
Lead	111	110	1	70-130	20
Barium	111	109	2	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

	REPORTING	
COMPOUND	LIMIT	RESULT
Antimony (Sb)	2	ND
Arsenic (As)	1	ND
Barium (Ba)	1	ND
Berryllium (Be)	1	ND
Cadmium (Cd)	0.5	ND
Chromium (Cr)	1	ND
Cobalt (Co)	1	ND
Copper (Cu)	1	ND
Lead (Pb)	1	ND

		88
	REPORTING	
COMPOUND	LIMIT	RESULT
Molybdenum (Mo)	1	ND
Nickel (Ni)	1	ND
Selenium (Se)	2	ND
Silver (Ag)	1	ND
Thallium (Tl)	2	ND
Vanadium (V)	1	ND
Zinc (Zn)	1	ND

Unit: mg/kg

CHAIN OF CUSTODY RECORD

824 Bentley Place				Tel: (562) 926- oup			the second value of the se			CT		P	200 1	of 3	
Company Nam					Site A	ddress:	338 5 HILLS		5 00		Page 2 1 of 3 Sample Conditions				
Project Manage		PATRICIA DEAN 8204 BLACKSTONE				LOS ANGEVES, CA						<u>x</u> Chilled Seals Intact			
Project No./Nan					0	lad Duu		pp/ci			-			Time De	
Tel: 714-730	1-5397	- Fax:	714-730-	-64/6	Sampi	led By:		P/C						Day / 24hr	
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	MATRIX (air/soil/water	NO. OF CONTAINERS/ TYPE	8015M TPH-G	8015M TPH-D	8021B BTEX MTBE	418. JRPH	8260B BTEX OXY.	8260B VOC	CAM METALS	8270C			1
SB-3-5	12/28/15	1100	SOIL	sleevetzencore						X	X				
SB-3-7	1	1108		sleeve	1.1.1						×				100
SB-3-10		1110		sleeve + 201000	-					X	X				
5B-3-15		1117		2 endores						X					
SB-3-20	1	1121		*						X					-
58-3-25			4	V								-			
SB-3-30	12/28/15	1128	1	spece Rencore						X		2			
5B-4-1	1	1300		sleeve		1. 1. 1.					×		X	100	
SB-4-3		1330					1.000				×		Xo		
DB-4-5		1335			1			×	186		X		1 m	1.11	5 33
B-4-7		1338	1	4			10				X		×	1	
B-4-10	-1	1343			11	100 100		×	-	4	×			_	_
3-4-20-165		1355	1	-		1997		×							_
B-4-20 20		1359			-			×						1.1	
3-4-225	100	1403	Y	·				X					-	Carlos -	1.10
3-4-30	1	1408	Soil	SLeeve	-		23	X		100	2 7.8				3
		198 J.			-							100			E.B
					`		B.A.			1			-		
		A.		4	22		12.1	5					-	1	1
0	-				1	12 AV							101		here
nquished By:		Date/Tim		Received By:	300	- 1		Time:	- 171		quired: (cir)F Globa		Yes	No	1

January 14, 2016

ELAP Certificate No: 2268

Ms. Patricia Dean The Reynolds Group 520 West 1st St. Tustin, CA 92780

Project:8204 BlackstoneC&E ID:151228D

Dear Ms. Dean,

Enclosed is an analytical report for the sample(s) received by Chemical & Environmental Laboratories, Inc. on December 28, 2015, and analyzed as indicated in the chain-of-custody attached.

Unless otherwise noted, no problems were encountered during receiving, preparation and analysis of these samples.

Please call me at (562) 926-8091 if you have any questions regarding this report.

Sincerely,

Lang 3hy

Larry Zhang, Ph.D. Laboratory Director

ANALYTICAL REPORT

--- 8015M (Hydrocarbon Characterization) ---

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Water					Date A Date I	Sampled: Analyzed: Reported: Reported:	12/28 12/29 01/04 mg/L	/15
C&E LAB ID	SAMPLE ID	DF	DE C ₄ -C ₁₂		C ₁₃ -C ₂₂		C ₂₃ -C ₄₀		%Surrogate
	SAMI LL ID	DI	Result	RL	Result	RL	Result	RL	(70-130)
151228D-1	SB-2-GW	1	ND	0.1	ND	0.5	ND	1	81
151228D-2	SB-4-GW	1	ND	0.1	ND	0.5	ND	1	80

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Project Manager: I Project Name: 8	The Reynold Patricia Dear 8204 Blackst Water	n						Date Samp Date Analy Date Report Unit Report	yzed: rted:	12/28/15 12/29/15 01/04/16 μg/L or ppb	
C&E LAB I	D	151228	D-1	151228	D-2						
SAMPLE I	D	SB-2-0	θW	SB-4-C	θW						
DF		1		1							
COMPOUN	D	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone		ND	2.0	ND	2.0						
Benzene		ND	0.5	ND	0.5						
Bromodichloromethar	ne	ND	1.0	ND	1.0						
Bromoform		ND	1.0	ND	1.0						
Bromomethane		ND	1.0	ND	1.0						
2-Butanone (MEK)		ND	2.0	ND	2.0						
Carbon Disulfide		ND	1.0	ND	1.0						
Carbon Tetrachloride		ND	0.5	ND	0.5						
Chlorobenzene		ND	0.5	ND	0.5						
Chloroethane		ND	1.0	ND	1.0						
Chloroform		ND	1.0	ND	1.0						
Chloromethane		ND	1.0	ND	1.0						
Cyclohexane		ND	0.5	ND	0.5						
Dibromochloromethar	ne	ND	1.0	ND	1.0						
1,2-Dibromo-3-Chloro	opropane	ND	1.0	ND	1.0						
1,2-Dibromoethane		ND	1.0	ND	1.0						
1,2-Dichlorobenzene		ND	0.5	ND	0.5						
1,3-Dichlorobenzene		ND	0.5	ND	0.5						
1,4-Dichlorobenzene		ND	0.5	ND	0.5						
Dichlorodifluorometh	ane	ND	1.0	ND	1.0						
1,1-Dichloroethane		ND	0.5	ND	0.5						
1,2-Dichloroethane		ND	0.5	ND	0.5						
1,1-Dichloroethene		ND	0.5	ND	0.5						
cis-1,2-Dichloroethen	e	ND	0.5	ND	0.5						
trans-1,2-Dichloroethe	ene	ND	0.5	ND	0.5						
1,2-Dichloropropane		ND	0.5	ND	0.5						

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

Project Manager: P Project Name: 8	[°] he Reynold Patricia Dear 204 Blackst Vater	1						Date Samp Date Analy Date Repo Unit Report	yzed: rted:	12/28/15 12/29/15 01/04/16 μg/L or ppb)
C&E LAB II	D	151228	D-1	151228	D-2						
SAMPLE ID)	SB-2-0	βW	SB-4-C	βW						
DF		1		1							
COMPOUNI	D	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
trans-1,3-Dichloroprop	bene	ND	0.5	ND	0.5						
cis-1,3-Dichloroproper	ne	ND	0.5	ND	0.5						
Ethylbenzene		ND	0.5	ND	0.5						
2-Hexanone		ND	0.5	ND	0.5						
Methyl Acetate		ND	0.5	ND	0.5						
Methylcyclohexane		ND	0.5	ND	0.5						
Methylene Chloride		ND	0.5	ND	0.5						
4-Methyl-2-Pentanone		ND	0.5	ND	0.5						
Styrene		ND	0.5	ND	0.5						
Isopropylbenzene		ND	0.5	ND	0.5						
4-Isopropyltoluene		ND	0.5	ND	0.5						
1,1,2,2-Tetrachloroetha	ane	ND	0.5	ND	0.5						
Tetrachloroethene		ND	0.5	ND	0.5						
Toluene		ND	0.5	ND	0.5						
1,2,4-Trichlorobenzene	e	ND	0.5	ND	0.5						
1,1,1-Trichloroethane		ND	0.5	ND	0.5						
1,1,2-Trichloroethane		ND	0.5	ND	0.5						
Trichloroethene		ND	0.5	ND	0.5						
Trichlorofluoromethan	e	ND	0.5	ND	0.5						
1,1,2-Trichlorotrifluoro	oethane	ND	0.5	ND	0.5						
Vinyl Chloride		ND	0.5	ND	0.5						
Total Xylenes		ND	0.5	ND	0.5						
Surrogate Compo	ounds				% Surr	ogate Recov	very (70-130)			
Dibromofluoromethane	e	108		104							
1,2-Dichloroethane-d4		98		110							
Toluene-D8		104		99							
4-Bromofluorobenzene	e	94		83							

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

ANALYTICAL REPORT

---- EPA 8270C (SVOCs) ----

Client Name: The Reynolds Group Date Sampled: 12/28/15 Project Manager: Patricia Dean Date Extracted: 12/29/15 Project Name: 8204 Blackstone Date Analyzed: 01/04/16 Sample Matrix: Water Date Reported: 01/06/16 C&E LAB ID 151228D-1 151228D-2 SAMPLE ID SB-2-GW SB-4-GW DF 1 1 Unit Reported: µg/L or ppb COMPOUND Result RL Result RL Result RL Result RL Result RL ND N-nitrosodimethylamine ND 20 20 Bis (2-Chloroethyl) Ether ND 10 ND 10 2-Chlorophenol ND 10 ND 10 ND Phenol ND 20 20 1.3-Dichlorobenzene ND 10 ND 10 ND 1.4-Dichlorobenzene 10 ND 10 1,2-Dichlorobenzene ND ND 10 10 Bis (2-Chloroisopropyl) Ether ND 10 ND 10 Hexachloroethane ND ND 10 10 2-Methyl Phenol ND ND 10 10 N-Nitrosodi-N-Propylamine ND ND 10 10 4-Methylphenol ND ND 10 10 Nitrobenzene ND 10 ND 10 Isophorone ND ND 10 10 2-Nitrophenol ND 20 ND 20 2,4-Dimethylphenol ND ND 10 10 Bis (2-Chloroethoxy) Methane ND 10 ND 10 2,4-Dichlorophenol ND 10 ND 10 1,2,4-Trichlorobenzene ND ND 10 10 Naphthalene ND ND 10 10 4-Chloroaniline ND 20 ND 20 Hexachlorobutadiene ND ND 10 10 ND 2-Methylnaphthalene ND 10 10 4-Chloro-3-Methylphenol ND ND 10 10 Hexachlorocyclopentadiene ND ND 10 10 ND 2,4,6-Trichlorophenol ND 10 10 2,4,5-Trichlorophenol ND ND 10 10 2-Chloronaphthalene ND 10 ND 10 2-Nitroaniline ND ND 20 20 Acenaphthylene ND ND 10 10 Dimethyl Phthalate ND 10 ND 10 2,6-Dinitrotoluene ND 10 ND 10 Acenaphthene ND 10 ND 10 3-Nitroaniline ND ND 20 20 4-Nitrophenol ND ND 20 20 Dibenzofuran ND 10 ND 10

To be continued on page 2

Page 1 of 2

ANALYTICAL REPORT

Page 2 of 2

EPA	. 8270C (SVOCs)	
-----	-----------------	--

Client Name:The ReynoldProject Manager:Patricia DeaProject Name:8204 BlacksSample Matrix:Water	n						Date Samp Date Extra Date Anal Date Repo	acted: yzed:	12/28/15 12/29/15 01/04/16 01/06/16	
C&E LAB ID	151228	D-1	151228	D-2						
SAMPLE ID	SB-2-C		SB-4-0							
DF	1	,,,	1							
		Unit	Reported:	ug/Lo	r ppb					
COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
2,4-Dinitrotoluene	ND	10	ND	10	1000010		Ttobart		Ittooutr	
2,4-Dinitrophenol	ND	20	ND	20						
Fluorene	ND	10	ND	10						
4-Chlorophenyl Phenyl Ether	ND	10	ND	10						
Diethylphthalate	ND	10	ND	10						
4-Nitroaniline	ND	20	ND	20						
Azobenzene	ND	10	ND	10						
2-Methyl-4,6-Dinitrophenol	ND	10	ND	10						
4-Bromophenyl Phenyl Ether	ND	-	ND							
Hexachlorobenzene		10		10						
	ND	10	ND	10						
Pentachlorophenol	ND	10	ND	10						
Phenanthrene	ND	10	ND	10						
Anthracene	ND	10	ND	10						
Carbazole	ND	10	ND	10						
Di-N-Butylphthalate	ND	10	ND	10						
Fluoranthene	ND	10	ND	10						
Pyrene	ND	10	ND	10						
Butylbenzylphthalate	ND	10	ND	10						
Benzo(a)Anthracene	ND	10	ND	10						
Chrysene	ND	10	ND	10						
Bis (2-Ethylhexyl) Phthalate	ND	10	ND	10						
Di-N-Octylphthalate	ND	10	ND	10						
Benzo (b) Fluoranthene	ND	10	ND	10						
Benzo (k) Fluoranthene	ND	10	ND	10						
Benzo (a) Pyrene	ND	10	ND	10						
Indeno (1,2,3-c,d) Pyrene	ND	10	ND	10						
Dibenzo (a,h) Anthracene	ND	10	ND	10						
Benzo (g,h,i) Perylene	ND	10	ND	10						
Come acts Come and a				0/ 6	ageta Deser		(10.127)			
Surrogate Compounds	74			% Surro	ogate Recov	very ((18-157)			
2-Fluorophenol	74		79							
Phenol-d5	76		82							
Nitrobenzene-d5	89		94							
2-Fluorobiphenyl	85		90							
2,4,6-tribromophenol	39		0*							
p-terphenyl-d14 ND = Not detected at the indicated re	64		68							

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

*=Surrogate fail due to matrix interference (if marked)

ANALYTICAL REPORT

---- EPA 8082 (PCBs) ----

Client Name:	The Reyno	lds Group		Date Sampled:	12/28/15	
Project Manager:	Patricia De	an		Date Extracted:	12/29/15	
Project Name:	8204 Black	stone		Date Analyzed:	01/04/16	
Sample Matrix:	Water			Date Reported:	01/06/16	
C&E LAB	ID	151228D-1	151228D-2			
SAMPLE	ID	SB-2-GW	SB-4-GW			

Unit Reported: ug/L or ppb

2 *

COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
PCB-1016	ND	2.00	ND	2.00						
PCB-1221	ND	2.00	ND	2.00						
PCB-1232	ND	2.00	ND	2.00						
PCB-1242	ND	2.00	ND	2.00						
PCB-1248	ND	2.00	ND	2.00						
PCB-1254	ND	2.00	ND	2.00						
PCB-1260	ND	2.00	ND	2.00						

Surrogate Compounds		% Surrogate Recovery (40-150)							
2,4,5,6-tetrachloro-m-xylene	120	115							
decachlorobiphenyl	70	65							

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

2 *

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

* = Actual detection limit raised due to matrix interference.

DF

ANALYTICAL REPORT

--- EPA 8081A (Pesticides) ---

SAMPLE ID SI DF DF COMPOUND Res Aldrin N α-BHC N β-BHC N γ-BHC N δ-BHC N δ-BHC N δ-Chlordane N δ-Chlordane N 4,4'-DDD N 4,4'-DDT N	D D D D	W *	Unit Repo Result ND ND ND ND	GW 2 * rrted: RL 0.200 0.200 0.200	μg/L or ppt Result) RL	Result	RL	Result	RL
DF COMPOUND Real Aldrin N α-BHC N β-BHC N γ-BHC N δ-BHC N α-Chlordane N δ-Chlordane N Δ-Chlordane N 4,4'-DDD N 4,4'-DDE N 4,4'-DDT N	2 sult D D D D D D	* RL 0.200 0.200 0.200 0.200	2 Unit Repo Result ND ND ND ND	2 * prted: RL 0.200 0.200 0.200			Result	RL	Result	RL
COMPOUND Res Aldrin N α-BHC N β-BHC N γ-BHC N δ-BHC N α-Chlordane N δ-Chlordane N Λ-Chlordane N 4,4'-DDD N 4,4'-DDT N	sult D D D D D	RL 0.200 0.200 0.200 0.200	Unit Repo Result ND ND ND ND	orted: RL 0.200 0.200 0.200			Result	RL	Result	RL
AldrinN α -BHCN β -BHCN γ -BHCN δ -BHCN α -ChlordaneN δ -ChlordaneNTotal ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN	D D D D D	RL 0.200 0.200 0.200 0.200	Result ND ND ND ND	RL 0.200 0.200 0.200			Result	RL	Result	RL
AldrinN α -BHCN β -BHCN γ -BHCN δ -BHCN α -ChlordaneN δ -ChlordaneNTotal ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN	D D D D D	0.200 0.200 0.200 0.200	ND ND ND ND	0.200 0.200 0.200	Result	RL	Result	RL	Result	RL
α-BHCNβ-BHCNγ-BHCNδ-BHCNα-ChlordaneNδ-ChlordaneNTotal ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN	D D D D	0.200 0.200 0.200	ND ND ND	0.200 0.200						
β-BHCN γ -BHCNδ-BHCNα-ChlordaneNδ-ChlordaneNTotal ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN	D D D	0.200 0.200	ND ND	0.200						
γ-BHC N δ-BHC N α-Chlordane N δ-Chlordane N Total Chlordane N 4,4'-DDD N 4,4'-DDE N 4,4'-DDT N	D D	0.200	ND							
δ-BHC N α-Chlordane N δ-Chlordane N Total Chlordane N 4,4'-DDD N 4,4'-DDE N 4,4'-DDT N	D									
α-ChlordaneNδ-ChlordaneNTotal ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN		0.200		0.200						
δ-ChlordaneNTotal ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN	D		ND	0.200						
Total ChlordaneN4,4'-DDDN4,4'-DDEN4,4'-DDTN		0.200	ND	0.200						
4,4'-DDD N 4,4'-DDE N 4,4'-DDT N	D	0.200	ND	0.200						
4,4'-DDE N 4,4'-DDT N	D	0.200	ND	0.200						
4,4'-DDT N	D	0.200	ND	0.200						
	D	0.200	ND	0.200						
Dieldrin N	D	0.200	ND	0.200						
	D	0.200	ND	0.200						
Endosulfan I N	D	0.200	ND	0.200						
Endosulfan II N	D	0.200	ND	0.200						
Endosulfan Sulfate N	D	0.200	ND	0.200						
Endrin N	D	0.200	ND	0.200						
Endrin Aldehyde N	D	0.200	ND	0.200						
Endrin Ketone N	D	0.200	ND	0.200						
Heptachlor N	D	0.200	ND	0.200						
Heptachlor Epoxide N	D	0.200	ND	0.200						
Methoxychlor N	D	0.200	ND	0.200						
Toxaphene N		4.00	ND	4.00						

Surrogate Compounds	% Surrogate Recovery (40-150)						
2,4,5,6-tetrachloro-m-xylene	120	115					
decachlorobiphenyl	70	65					

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

ANALYTICAL REPORT

---- CA Title 22 Metals (7) ----

Client Name:	The Re	ynolds Group	Date Sampled:	12/28/15		
Project Manager:	Patricia	Dean		Date Analyzed:	12/29/15	
Project Name:	8204 B	8204 Blackstone				12/30/15
Sample Matrix:	Water				Unit Reported:	µg/L or ppb
C&E LAB I	D	151228D-1	151228D-2			
SAMPLE II	D	SB-2-GW	SB-4-GW			
DF		1	1			
		-	-		-	

COMPOUND	Method	Result	RL								
Antimony (Sb)	6010B	ND	10	ND	10						
Arsenic (As)	6010B	ND	10	ND	10						
Barium (Ba)	6010B	119	10	119	10						
Beryllium (Be)	6010B	ND	2	ND	2						
Cadmium (Cd)	6010B	ND	5	ND	5						
Chromium (Cr)	6010B	15	5	9	5						
Cobalt (Co)	6010B	ND	5	ND	5						
Copper (Cu)	6010B	ND	5	ND	5						
Lead (Pb)	6010B	ND	5	ND	5						
Mercury (Hg)	7470A	ND	1	ND	1						
Molybdenum (Mo)	6010B	20	5	16	5						
Nickel (Ni)	6010B	ND	5	ND	5						
Selenium (Se)	6010B	ND	10	ND	10						
Silver (Ag)	6010B	ND	5	ND	5						
Thallium (Tl)	6010B	ND	10	ND	10						
Vanadium (V)	6010B	ND	5	ND	5						
Zinc (Zn)	6010B	116	10	91	10						

ANALYTICAL REPORT

Client Name: The Reynolds	Sample Matrix:	Water				
Project Manager: Patricia Dean					Date Sampled:	12/28/15
Project Name: 8204 Blacksto	ne				Date Reported:	01/12/16
					RE	SULT
					C&E ID	C&E ID
Constituents	Method	Units	Reporting	Date	151228D-1	151228D-2
			Limit	Analyzed	Sample ID	Sample ID
					SB-2-GW	SB-4-GW
Biochemical Oxygen Demand	SM 5210B	mg/L	1.0	01/03/16	ND	ND
Oil & Grease	EPA 1664A	mg/L	1.0	01/06/16	ND	ND
Chlorine, Total Residual	SM 4500-CI F	mg/L	0.10	12/29/15	ND	ND
Surfactants(MBAS)	SM 5540 C	mg/L	0.10	12/29/15	0.13	0.14
Phenols	EPA8270C	ug/L	10.0	01/11/16	ND	ND
Settleable Solids	SM 2540 F	ml/L	0.1	12/29/15	42	93
Total Dissolved Solids	SM 2540 C	mg/L	1.00	12/31/15	555	625
Sulfides	SM 4500 S2-D	mg/L	0.05	12/29/15	ND	ND

Lang 3hy

Larry Zhang, Ph.D., Laboratory Director ELAP Certificate No.: 2268

QC REPORT

--- 8015M (Diesel) ---

I. Laboratory Control Sample

Date Analyzed: 12/29/15 LCS ID: TPH151229LC

ANALYTE	LCS %	ACP %CL
Diesel	115	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch : TPH151229MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
Diesel	100	89	12	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

Unit: mg/L

COMPOUND	REPORTING LIMIT	RESULT
Diesel	0.5	ND

Surrogate Compounds	% Surr. Rec. (70-130)
BFB	121

QC REPORT

---- EPA 8260B (VOC) ---

I. Laboratory Control Sample

Date Analyzed: 12/29/15 VOC151229LC LCS ID:

ANALYTE	LCS %	ACP %CL
1,1-Dichloroethene	115	70-130
Benzene	95	70-130
Trichloroethene	110	70-130
Toluene	105	70-130
Chlorobenzene	100	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15

QC Batch: VOC151229MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
1,1-Dichloroethene	115	110	4	70-130	20
Benzene	95	90	5	70-130	20
Trichloroethene	115	100	14	70-130	20
Toluene	110	100	10	70-130	20
Chlorobenzene	100	95	5	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

	D d			D	
COMPOUND	Reporting	RESULT	COMPOUND	Reporting	RESULT
comicent	Limit		Comborne	Limit	
Acetone	2	ND	1,2-Dichlorobenzene	0.5	ND
Benzene	0.5	ND	1,3-Dichlorobenzene	0.5	ND
Bromodichloromethane	1	ND	1,4-Dichlorobenzene	0.5	ND
Bromoform	1	ND	Dichlorodifluoromethane	1	ND
Bromomethane	1	ND	1,1-Dichloroethane	0.5	ND
2-Butanone (MEK)	1	ND	1,2-Dichloroethane	0.5	ND
Carbon Disulfide	1	ND	1,1-Dichloroethene	0.5	ND
Carbon Tetrachloride	0.5	ND	cis-1,2-Dichloroethene	0.5	ND
Chlorobenzene	0.5	ND	trans-1,2-Dichloroethene	0.5	ND
Chloroethane	1	ND	1,2-Dichloropropane	0.5	ND
Chloroform	1	ND	trans-1,3-Dichloropropene	0.5	ND
Chloromethane	1	ND	cis-1,3-Dichloropropene	0.5	ND
Cyclohexane	0.5	ND	Ethylbenzene	0.5	ND
Dibromochloromethane	1	ND	2-Hexanone	0.5	ND
1,2-Dibromo-3-Chloropropane	1	ND	Methyl Acetate	0.5	ND
1,2-Dibromoethane	1	ND	Methylcyclohexane	0.5	ND

Unit: µg/L

COMPOUND	Reporting	RESULT	
COMICOND	Limit	RESCET	
Methylene Chloride	0.5	ND	
4-Methyl-2-Pentanone	0.5	ND	
Styrene	0.5	ND	
Isopropylbenzene	0.5	ND	
4-Isopropyltoluene	0.5	ND	
1,1,2,2-Tetrachloroethane	0.5	ND	
Tetrachloroethene	0.5	ND	
Toluene	0.5	ND	
1,2,4-Trichlorobenzene	0.5	ND	
1,1,1-Trichloroethane	0.5	ND	
1,1,2-Trichloroethane	0.5	ND	
Trichloroethene	0.5	ND	
Trichlorofluoromethane	0.5	ND	
1,1,2-Trichlorotrifluoroethane	0.5	ND	
Vinyl Chloride	1	ND	
Total Xylenes	0.5	ND	

Surrogate Compounds	% Surr. Rec. (70-130)
Dibromofluoromethane	93
1,2-Dichloroethane-d4	83
Toluene-D8	108
4-Bromofluorobenzene	90

QC REPORT

---- EPA 8270C (SVOC) ----

I. Laboratory Control Sample

Date Extracted: 12/29/15 Date Analyzed: 01/04/16

LCS ID: SVOC160104CW

ANALYTE	LCS %	ACP %CL
Phenol	105	40-150
1,4-Dichlorobenzene	107	40-150
2,4-Dichlorophenol	105	40-150
Hexachlorobutadiene	102	40-150
4-Chloro-3-methylphenol	106	40-150
Fluoranthene	87	40-150

II. Matrix Spike/Matrix Spike Duplicate

Date Extracted: 12/29/15

Date Analyzed: 01/04/16

QC Batch #: SVOC160104MS

ANALYTE	MS %	MSD %	RPD	ACP %CL	ACP RPD
Phenol	68	67	1	40-150	30
Pyrene	59	63	7	40-150	30

QC REPORT ---- EPA 8270C (SVOC) ----

F

III. Method Blank

Date Extracted: 12/29/15

-

Date Analyzed: 01/04/16

Т

Unit: µg/L

COMPOUND	Reporting	RESULT	COMPOUND	Reporting	RESULT
	Limit			Limit	
N-nitrosodimethylamine	20	ND	2,4-Dinitrotoluene	10	ND
Bis (2-Chloroethyl) Ether	10	ND	2,4-Dinitrophenol	20	ND
2-Chlorophenol	10	ND	Fluorene	10	ND
Phenol	20	ND	4-Chlorophenyl Phenyl Ether	10	ND
1,3-Dichlorobenzene	10	ND	Diethylphthalate	10	ND
1,4-Dichlorobenzene	10	ND	4-Nitroaniline	20	ND
1,2-Dichlorobenzene	10	ND	Azobenzene	10	ND
Bis (2-Chloroisopropyl) Ether	10	ND	4,6-Dinitro-2-Methyl Phenol	10	ND
Hexachloroethane	10	ND	4-Bromophenyl Phenyl Ether	10	ND
2-Methyl Phenol	10	ND	Hexachlorobenzene	10	ND
N-Nitrosodi-N-Propylamine	10	ND	Pentachlorophenol	10	ND
4-Methylphenol	10	ND	Phenanthrene	10	ND
Nitrobenzene	10	ND	Anthracene	10	ND
Isophorone	10	ND	Carbazole	10	ND
2-Nitrophenol	20	ND	Di-N-Butylphthalate	10	ND
2,4-Dimethylphenol	10	ND	Fluoranthene	10	ND
Bis (2-Chloroethoxy) Methane	10	ND	Pyrene	10	ND
2,4-Dichlorophenol	10	ND	Butylbenzylphthalate	10	ND
1,2,3-Trichlorobenzene	10	ND	Benzo(a)Anthracene	10	ND
Naphthalene	10	ND	Chrysene	10	ND
4-Chloroaniline	20	ND	Bis (2-Ethylhexyl) Phthalate	10	ND
Hexachlorobutadiene	10	ND	Di-N-Octylphthalate	10	ND
1-Methylnaphthalene	10	ND	Benzo (b) Fluoranthene	10	ND
4-Chloro-3-Methylphenol	10	ND	Benzo (k) Fluoranthene	10	ND
Hexachlorocyclopentadiene	10	ND	Benzo (a) Pyrene	10	ND
2,4,6-Trichlorophenol	10	ND	Indeno (1,2,3-c,d) Pyrene	10	ND
2,3,4-Trichlorophenol	10	ND	Dibenzo (a,h) Anthracene	10	ND
1-Chloronaphthalene	10	ND	Benzo (g,h,i) Perylene	10	ND
2-Nitroaniline	20	ND			1]
Acenaphthylene	10	ND	Surrogate Compounds 9		Rec (40-140)
Dimethyl Phthalate	10	ND	2-Fluorophenol		98
2,6-Dinitrotoluene	10	ND	1		94
Acenaphthene	10	ND			112
3-Nitroaniline	20	ND			113
4-Nitrophenol	20	ND	2,4,6-tribromophenol		72
Dibenzofuran	10	ND	p-terphenyl-d14		74
	1	1	· · ·	I	

QC REPORT

---- EPA 8082 (PCBs) ----

I. Laboratory Control Sample

Date Extracted:	12/29/15
Date Analyzed:	01/04/16
LCS ID:	PCB151229LCW

ANALYTE	LCS %	ACP%CL
PCB(1016+1260)	106	75-125

II. Matrix Spike/Matrix Spike Duplicate

Date Extracted:	12/29/15
Date Analyzed:	01/04/16
QC Batch:	PCB151229MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
PCB(1016+1260)	77	79	3	70-130	20

III. Method Blank

Date Extracted:	12/29/15
Date Analyzed:	01/04/16

Unit: µg/L

COMPOUDN	REPORTING LIMIT	RESULT
PCB-1016	1.00	ND
PCB-1221	1.00	ND
PCB-1232	1.00	ND
PCB-1242	1.00	ND
PCB-1248	1.00	ND
PCB-1254	1.00	ND
PCB-1260	1.00	ND
	1	

Surrogate Compounds	% Surr. Rec. (40-150)
2,4,5,6-tetrachloro-m-xylene	75
decachlorobiphenyl	73

QC REPORT

--- EPA 8081A (Pesticides) ---

I. Laboratory Control Sample

Date Extracted:	12/29/15
Date Analyzed:	01/04/16
LCS ID:	PEST151229LC

ANALYTE	LCS %	ACP %CL
gamma-BHC	115	75-125
Aldrin	97	75-125
Dieldrin	88	75-125
4,4'-DDE	81	75-125

II. Matrix Spike/Matrix Spike Duplicate

Date Extracted:	12/29/15
Date Analyzed:	01/04/16
QC Batch:	PEST151229MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
gamma-BHC	123	118	4	70-130	0-20
Aldrin	108	109	1	70-130	0-20
4,4'-DDE	88	88	0	70-130	0-20

III. Method Blank

Date Extracted:12/29/15Date Analyzed:01/04/16

COMPOUDN	REPORTING LIMIT	RESULT
Aldrin	0.100	ND
a-BHC	0.100	ND
β-ΒΗC	0.100	ND
γ-ΒΗC	0.100	ND
δ-ΒΗC	0.100	ND
Chlordane	0.100	ND
4,4'-DDD	0.100	ND
4,4'-DDE	0.100	ND
4,4'-DDT	0.100	ND
Dieldrin	0.100	ND

	Unit: µg/L						
COMPOUDN	REPORTING LIMIT	RESULT					
Endosulfan I	0.100	ND					
Endosulfan II	0.100	ND					
Endosulfan Sulfate	0.100	ND					
Endrin	0.100	ND					
Endrin Aldehyde	0.100	ND					
Endrin Ketone	0.100	ND					
Heptachlor	0.100	ND					
Heptachlor Epoxide	0.100	ND					
Methoxychlor	0.100	ND					
Toxaphene	2.00	ND					

Surrogate Compounds	% Surr. Rec. (40-150)
2,4,5,6-tetrachloro-m-xylene	75
decachlorobiphenyl	73

QC REPORT

---- EPA 6010B (Metals) ----

I. Laboratory Control Sample

Date Analyzed:12/29/15LCS ID:MET151229LCW

ANALYTE	LCS %	ACP %CL
Arsenic	110	70-130
Selenium	114	70-130
Cadmium	112	70-130
Lead	110	70-130
Barium	116	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/29/15 QC Batch #: MET151229CMS

ANALYTE	MS %	MSD %	RPD	ACP %CL	ACP RPD
Arsenic	109	108	1	70-130	20
Selenium	109	108	1	70-130	20
Cadmium	110	108	2	70-130	20
Lead	111	110	1	70-130	20
Barium	111	109	2	70-130	20

III. Method Blank

Date Analyzed: 12/29/15

COMPOUND	REPORTING LIMIT	RESULT
Antimony (Sb)	10	ND
Arsenic (As)	10	ND
Barium (Ba)	10	ND
Berryllium (Be)	2	ND
Cadmium (Cd)	5	ND
Chromium (Cr)	5	ND
Cobalt (Co)	5	ND
Copper (Cu)	5	ND
Lead (Pb)	5	ND

_	Unit:	μg/L
COMPOUND	REPORTING LIMIT	RESULT
Molybdenum (Mo)	5	ND
Nickel (Ni)	5	ND
Selenium (Se)	10	ND
Silver (Ag)	5	ND
Thallium (Tl)	10	ND
Vanadium (V)	5	ND
Zinc (Zn)	10	ND

CHAIN OF CUSTODY RECORD

C & E LABORATORIES, INC.

3824 Bentley Place	e, Cerritos, C	CA 90703		Tel: (562) 926	-8091		Fax: (5	62) 926	5940				22.3		
Company Nam	ompany Name: The Reynolds Group S		Site A	ddress:	338 S. HILL ST.				Page 31 of 3						
Project Manag	er:	PATRIC	LA DEA	N				* ANG				\$	Sample	Conditio	ns
Project No./Nar	me:	8204	BLACKSTO	OME			161				1	<u>x</u> c	hilled	Seals	s Intact
Tel: 714-73	0-5397	Fax:	714-730-	6476	Samp	led By:	F	n a				1		d Time D	
)			SAMPLE	NO. OF	SulPas	Dhando	man		Resticid	5	ICT +			Day / 24	
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	MATRIX (air/soil/water	CONTAINERS/	5015M TPH-G	TPH-D	80215 BTEX MTBE	418 TRPH	82608 BTEX OXY.	8260B VOC	CAM METALS	8270C SVOC	6019B	Dispond Netal 2 (abrillion	1200
SR3SB-26	1/2/28/15	1200	WATER	ZVOA+3 AME	15×	×	X	X	×	×	X	X	X	X	X
SB-4-GW	1	1455	WATER	/	X	×	X	×	X	×	×	×	×	×	×
							*								
												-			- fi
										- 					
			<u></u>				10								
			1.			12.2				v					
LOTES	0					~									
Plea	e also	analyze Settlea	each s	ample to	r the	tolla	s goic	2.5		-					
		Residua	al Chlorin	0	1	100	1				-				
		Methyler	Le Dille A	totive Jub	otances	(MD45	2								
etinquished By:		Date/Tim	e: 5 1713	Received By:	st	5		e/Time:	1715		quired: (cii DF Globa		Yes .: T	No	
elinquished By:		Date/Tim	e:	Received By:			Dat	e/Time:	1	Com	iments:		-		

January 29, 2016

ELAP Certificate No: 2268

Ms. Patricia Dean The Reynolds Group 520 West 1st St. Tustin, CA 92780

Project:8204 BlackstoneC&E ID:151229D

Dear Ms. Dean,

Enclosed is an analytical report for the sample(s) received by Chemical & Environmental Laboratories, Inc. on December 29, 2015, and analyzed as indicated in the chain-of-custody attached.

Unless otherwise noted, no problems were encountered during receiving, preparation and analysis of these samples.

Please call me at (562) 926-8091 if you have any questions regarding this report.

Sincerely,

Lang 3hy

Larry Zhang, Ph.D. Laboratory Director

ANALYTICAL REPORT

--- 8015M (Hydrocarbon Characterization) ---

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil					Date A Date H	Sampled: Analyzed: Reported: Reported:	12/29/ 12/30/ 01/05/ mg/kg	/15
C&E LAB ID	SAMPLE ID	DF	C ₄ -C	12	C ₁₃ -0	C ₂₂	C ₂₃ -C	40	%Surrogate
		DI	Result	RL	Result	RL	Result	RL	(70-130)
151229D-3	SB-5-5	1	ND	0.1	ND	1	ND	50	110
151229D-5	SB-5-10	1	ND	0.1	ND	1	ND	50	112
151229D-6	SB-5-15	1	ND	0.1	ND	1	ND	50	122
151229D-7	SB-5-20	1	ND	0.1	ND	1	ND	50	128
151229D-8	SB-5-25	1	ND	0.1	ND	1	ND	50	107
151229D-9	SB-5-30	1	ND	0.1	ND	1	ND	50	108

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

--- 8015M (Hydrocarbon Characterization) ---

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Water					Date A Date H	Sampled: Analyzed: Reported: Reported:	12/29, 12/30, 01/05, mg/L	/16
C&E LAB ID	SAMPLE ID	DF	C ₄ -C ₁	2	C ₁₃ -C	222	C ₂₃ -C	40	%Surrogate
	SAMI LL ID	DI	Result	RL	Result	RL	Result	RL	(70-130)
151229D-36	SB-5-GW	1	0.5	0.1	ND	0.5	ND	1	111

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Project Manager:PProject Name:8Sample Matrix:S	The Reynolds Patricia Dean 204 Blacksto oil	n I stone I							oled: yzed: orted: rted:	12/29/15 12/31/15 01/05/16 μg/kg or ppb	
C&E LAB II		151229		1512291		151229I		1512291		1512291	
SAMPLE II)	SB-6-	.5	SB-6-	10	SB-6-	15	SB-6-	20	SB-6-	25
DF		1		1		1		1		1	
COMPOUNI	D	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone		ND	5	ND	5	ND	5	ND	5	ND	5
Benzene		ND	1	ND	1	ND	1	ND	1	ND	1
Bromodichloromethan	e	ND	2	ND	2	ND	2	ND	2	ND	2
Bromoform		ND	5	ND	5	ND	5	ND	5	ND	5
Bromomethane		ND	2	ND	2	ND	2	ND	2	ND	2
2-Butanone (MEK)		ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Disulfide		ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Tetrachloride		ND	2	ND	2	ND	2	ND	2	ND	2
Chlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
Chloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
Chloroform		ND	2	ND	2	ND	2	ND	2	ND	2
Chloromethane		ND	5	ND	5	ND	5	ND	5	ND	5
Cyclohexane		ND	2	ND	2	ND	2	ND	2	ND	2
Dibromochloromethan	e	ND	5	ND	5	ND	5	ND	5	ND	5
1,2-Dibromo-3-Chloro	propane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dibromoethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
1,3-Dichlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
1,4-Dichlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
Dichlorodifluorometha	ine	ND	5	ND	5	ND	5	ND	5	ND	5
1,1-Dichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,1-Dichloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
cis-1,2-Dichloroethene	;	ND	2	ND	2	ND	2	ND	2	ND	2
trans-1,2-Dichloroethe	ne	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloropropane		ND	2	ND	2	ND	2	ND	2	ND	2

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

Project Manager: Patric	eynolds Group ia Dean Blackstone						Date Samp Date Analy Date Repo Unit Report	yzed: rted:	12/29/15 12/31/15 01/05/16 μg/kg or p	pb
C&E LAB ID	151229D-12	2	151229E) -14	1512290	D -15	1512291	D -16	1512291	D-17
SAMPLE ID	SB-6-5		SB-6-1	10	SB-6-	15	SB-6-2	20	SB-6-2	25
DF	1		1		1		1		1	
COMPOUND	Result R	L	Result	RL	Result	RL	Result	RL	Result	RL
trans-1,3-Dichloropropene	ND 2	2	ND	2	ND	2	ND	2	ND	2
cis-1,3-Dichloropropene		2	ND	2	ND	2	ND	2	ND	2
Ethylbenzene	ND 1	1	ND	1	ND	1	ND	1	ND	1
2-Hexanone	ND 2	2	ND	2	ND	2	ND	2	ND	2
Methyl Acetate	ND 2	2	ND	2	ND	2	ND	2	ND	2
Methylcyclohexane	ND 2	2	ND	2	ND	2	ND	2	ND	2
Methylene Chloride	ND 2	2	ND	2	ND	2	ND	2	ND	2
4-Methyl-2-Pentanone	ND 2	2	ND	2	ND	2	ND	2	ND	2
Styrene	ND 2	2	ND	2	ND	2	ND	2	ND	2
Isopropylbenzene	ND 2	2	ND	2	ND	2	ND	2	ND	2
4-Isopropyltoluene	ND 2	2	ND	2	ND	2	ND	2	ND	2
1,1,2,2-Tetrachloroethane	ND 2	2	ND	2	ND	2	ND	2	ND	2
Tetrachloroethene	ND 2	2	ND	2	ND	2	ND	2	ND	2
Toluene	ND 1	1	ND	1	ND	1	ND	1	ND	1
1,2,4-Trichlorobenzene	ND 2	2	ND	2	ND	2	ND	2	ND	2
1,1,1-Trichloroethane	ND 2	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichloroethane	ND 2	2	ND	2	ND	2	ND	2	ND	2
Trichloroethene	ND 2	2	ND	2	ND	2	ND	2	ND	2
Trichlorofluoromethane	ND 2	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichlorotrifluoroeth	ane ND 2	2	ND	2	ND	2	ND	2	ND	2
Vinyl Chloride	ND 5	5	ND	5	ND	5	ND	5	ND	5
Total Xylenes	ND 1	1	ND	1	ND	1	ND	1	ND	1
Surrogate Compound	S		(% Surr	ogate Reco	very (70-130)			
Dibromofluoromethane	97		100		101		106		110	
1,2-Dichloroethane-d4	91		97		89		97		113	
Toluene-D8	103		107		107		103		96	
4-Bromofluorobenzene	102		106		104		101		121	

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Project Manager:PathProject Name:820Sample Matrix:Soi	e Reynolds ricia Dean 4 Blacksto 1	one				1		Date Samp Date Anal Date Repo Unit Repo	yzed: rted: rted:	12/29/15 12/31/15 01/05/16 µg/kg or p	-
C&E LAB ID		1512291		151229I		151229I		151229I		1512291	
SAMPLE ID		SB-6	30	SB-7-	-5	SB-7-	10	SB-7-	15	SB-7-2	20
DF		1		1		1		1		1	
COMPOUND		Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone		ND	5	ND	5	ND	5	ND	5	ND	5
Benzene		ND	1	ND	1	ND	1	ND	1	ND	1
Bromodichloromethane		ND	2	ND	2	ND	2	ND	2	ND	2
Bromoform		ND	5	ND	5	ND	5	ND	5	ND	5
Bromomethane		ND	2	ND	2	ND	2	ND	2	ND	2
2-Butanone (MEK)		ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Disulfide		ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Tetrachloride		ND	2	ND	2	ND	2	ND	2	ND	2
Chlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
Chloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
Chloroform		ND	2	ND	2	ND	2	ND	2	ND	2
Chloromethane		ND	5	ND	5	ND	5	ND	5	ND	5
Cyclohexane		ND	2	ND	2	ND	2	ND	2	ND	2
Dibromochloromethane		ND	5	ND	5	ND	5	ND	5	ND	5
1,2-Dibromo-3-Chloropr	opane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dibromoethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
1,3-Dichlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
1,4-Dichlorobenzene		ND	2	ND	2	ND	2	ND	2	ND	2
Dichlorodifluoromethane	•	ND	5	ND	5	ND	5	ND	5	ND	5
1,1-Dichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,1-Dichloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
cis-1,2-Dichloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
trans-1,2-Dichloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloropropane		ND	2	ND	2	ND	2	ND	2	ND	2

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

Client Name:The ReynProject Manager:Patricia DProject Name:8204 BlacSample Matrix:Soil							Date Samp Date Anal Date Repo Unit Repo	yzed: rted:	12/29/15 12/31/15 01/05/16 μg/kg or p	pb
C&E LAB ID	1512291	D-18	1512291	D-21	1512291	D-22	1512291	D-23	1512291	D-24
SAMPLE ID	SB-6-	30	SB-7-	-5	SB-7-	10	SB-7-	15	SB-7-2	20
DF	1		1		1		1		1	
COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
trans-1,3-Dichloropropene	ND	2	ND	2	ND	2	ND	2	ND	2
cis-1,3-Dichloropropene	ND	2	ND	2	ND	2	ND	2	ND	2
Ethylbenzene	ND	1	ND	1	ND	1	ND	1	ND	1
2-Hexanone	ND	2	ND	2	ND	2	ND	2	ND	2
Methyl Acetate	ND									
Methylcyclohexane	ND	2	ND	2	ND	2	ND	2	ND	2
Methylene Chloride	ND	2	ND	2	ND	2	ND	2	ND	2
4-Methyl-2-Pentanone								2	ND	2
Styrene	ND	2	ND	2	ND	2	ND	2	ND	2
Isopropylbenzene	ND	2	ND	2	ND	2	ND	2	ND	2
4-Isopropyltoluene	ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2,2-Tetrachloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
Tetrachloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
Toluene	ND	1	ND	1	ND	1	ND	1	ND	1
1,2,4-Trichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
1,1,1-Trichloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
Trichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
Trichlorofluoromethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichlorotrifluoroethane	ND	2	ND	2	ND	2	ND	2	ND	2
Vinyl Chloride	ND	5	ND	5	ND	5	ND	5	ND	5
Total Xylenes	ND	1	ND	1	ND	1	ND	1	ND	1
Surrogate Compounds				% Surr	ogate Reco	very (70-130)			
Dibromofluoromethane	94		101		102		95		99	
1,2-Dichloroethane-d4	96		94		98		93		97	
Toluene-D8	106		104		104		102		102	
4-Bromofluorobenzene	110		104		107		102		102	

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Project Manager: Patric	eynolds Group ia Dean Blackstone 151229	D 25	1512291	20	1512291	21	Date Samp Date Anal Date Repo Unit Repo	yzed: orted: rted:	12/29/15 12/31/15 01/05/16 μg/kg or p 151229Ι	
SAMPLE ID	SB-7-	-30	SB-8	-5	SB-8-	10	SB-8-	15	SB-8-	20
DF	1		1		1		1		1	
COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone	ND	5	ND	5	ND	5	ND	5	ND	5
Benzene	ND	1	ND	1	ND	1	ND	1	ND	1
Bromodichloromethane	ND	2	ND	2	ND	2	ND	2	ND	2
Bromoform	ND	5	ND	5	ND	5	ND	5	ND	5
Bromomethane	ND	2	ND	2	ND	2	ND	2	ND	2
2-Butanone (MEK)	ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Disulfide	ND	2	ND	2	ND	2	ND	2	ND	2
Carbon Tetrachloride	ND	2	ND	2	ND	2	ND	2	ND	2
Chlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
Chloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
Chloroform	ND	2	ND	2	ND	2	ND	2	ND	2
Chloromethane	ND	5	ND	5	ND	5	ND	5	ND	5
Cyclohexane	ND	2	ND	2	ND	2	ND	2	ND	2
Dibromochloromethane	ND	5	ND	5	ND	5	ND	5	ND	5
1,2-Dibromo-3-Chloroprop	ane ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dibromoethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
1,3-Dichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
1,4-Dichlorobenzene	ND	2	ND	2	ND	2	ND	2	ND	2
Dichlorodifluoromethane	ND	5	ND	5	ND	5	ND	5	ND	5
1,1-Dichloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloroethane	ND	2	ND	2	ND	2	ND	2	ND	2
1,1-Dichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
cis-1,2-Dichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
trans-1,2-Dichloroethene	ND	2	ND	2	ND	2	ND	2	ND	2
1,2-Dichloropropane	ND	2	ND	2	ND	2	ND	2	ND	2

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

C&E LAB ID 151229D-25 151229D-29 151229D-31 151229D-32 151229D-33 SAMPLE ID SB-7-30 SB-8-5 SB-8-10 SB-8-15 SB-8-20 DF 1 1 1 1 1 1 1 COMPOUND Result RL RD </th <th>Project Manager: Project Name:</th> <th>The Reynold Patricia Dear 8204 Blackst Soil</th> <th>n</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Date Samp Date Anal Date Repo Unit Repo</th> <th>yzed: orted:</th> <th>12/29/15 12/31/15 01/05/16 μg/kg or p</th> <th>pb</th>	Project Manager: Project Name:	The Reynold Patricia Dear 8204 Blackst Soil	n						Date Samp Date Anal Date Repo Unit Repo	yzed: orted:	12/29/15 12/31/15 01/05/16 μg/kg or p	pb
DF 1 1 1 1 1 1 COMPOUND Result RL RL Result RL RL Result RL Result RL Result RL Result RL RD RL RD RL RD RL RD RL RL RL RL	C&E LAB I	ID	151229I	D-25	1512290) -29	1512291	D-31	151229I	D-32	151229I	D- 33
COMPOUND Result RL trans-1,3-Dichloropropene ND 2 ND	SAMPLE I	D	SB-7-2	30	SB-8-	-5	SB-8-	10	SB-8-	15	SB-8-	20
trans-1,3-Dichloropropene ND 2 ND 1	DF		1		1		1		1		1	
cis-1,3-Dichloropropee ND 2 ND 1 ND 2	COMPOUN	ID	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
cis-1,3-Dichloropropene ND 2 ND 2 ND 2 ND 2 ND 2 Ethylbenzene ND 1 ND 2 ND 2<	trans-1,3-Dichloropro	pene	ND	2	ND	2	ND	2	ND	2	ND	2
Ethylbenzene ND 1 ND 2 ND 2 <t>ND 2 ND 2 ND<td>· · ·</td><td>•</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td></t>	· · ·	•	ND	2	ND	2	ND	2	ND	2	ND	2
2-Hexanone ND 2 ND <td></td> <td></td> <td>ND</td> <td>1</td> <td>ND</td> <td>1</td> <td>ND</td> <td>1</td> <td>ND</td> <td>1</td> <td>ND</td> <td>1</td>			ND	1	ND	1	ND	1	ND	1	ND	1
Methylcyclohexane ND 2 ND 2 <th< td=""><td></td><td></td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td></th<>			ND	2	ND	2	ND	2	ND	2	ND	2
Methylene Chloride ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 4-Methyl-2-Pentanone ND 2 ND <td< td=""><td>Methyl Acetate</td><td></td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td></td<>	Methyl Acetate		ND	2	ND	2	ND	2	ND	2	ND	2
4-Methyl-2-Pentanone ND 2	Methylcyclohexane		ND 2 ND 2 ND 2 ND 2 ND									2
Styrene ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 Isopropylbenzene ND 2	Methylene Chloride									2	ND	2
Isopropylbenzene ND 2	4-Methyl-2-Pentanone									ND	2	
Horizopyltoluene ND 2	Styrene									ND	2	
1.1.2. ND 2 ND 1 ND	Isopropylbenzene		ND	2	ND	2	ND	2	ND	2	ND	2
Tetrachloroethene ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 Toluene ND 1 ND 2	4-Isopropyltoluene		ND	2	ND	2	ND	2	ND	2	ND	2
Toluene ND 1 ND 2 ND	1,1,2,2-Tetrachloroeth	nane	ND	2	ND	2	ND	2	ND	2	ND	2
1,2,4-Trichlorobenzene ND 2 ND <th< td=""><td>Tetrachloroethene</td><td></td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td><td>ND</td><td>2</td></th<>	Tetrachloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
1,1,1-Trichloroethane ND 2	Toluene		ND	1	ND	1	ND	1	ND	1	ND	1
1,1,2-Trichloroethane ND 2	1,2,4-Trichlorobenzer	ne	ND	2	ND	2	ND	2	ND	2	ND	2
Trichloroethene ND 2 ND 1 N	1,1,1-Trichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
Trichlorofluoromethane ND 2 ND 2 ND 2 ND 2 ND 2 1,1,2-Trichlorotrifluoroethane ND 2 ND 1 ND <td>1,1,2-Trichloroethane</td> <td></td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td>	1,1,2-Trichloroethane		ND	2	ND	2	ND	2	ND	2	ND	2
1,1,2-Trichlorotrifluoroethane ND 2 ND 3 ND 3 ND 1 102 1 1 102 </td <td>Trichloroethene</td> <td></td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td>	Trichloroethene		ND	2	ND	2	ND	2	ND	2	ND	2
Vinyl Chloride ND 5 ND 1 ND	Trichlorofluorometha	ne	ND	2	ND	2	ND	2	ND	2	ND	2
Total Xylenes ND 1 1 </td <td>1,1,2-Trichlorotrifluor</td> <td>roethane</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td> <td>ND</td> <td>2</td>	1,1,2-Trichlorotrifluor	roethane	ND	2	ND	2	ND	2	ND	2	ND	2
Surrogate Compounds % Surrogate Recovery (70-130) Dibromofluoromethane 100 107 95 107 102 1,2-Dichloroethane-d4 99 103 95 111 100 Toluene-D8 101 104 103 104 102	Vinyl Chloride		ND	5	ND	5	ND	5	ND	5	ND	5
Dibromofluoromethane 100 107 95 107 102 1,2-Dichloroethane-d4 99 103 95 111 100 Toluene-D8 101 104 103 104 102	Total Xylenes		ND	1	ND	1	ND	1	ND	1	ND	1
1,2-Dichloroethane-d49910395111100Toluene-D8101104103104102	Surrogate Comp	ounds			(% Surr	ogate Reco	very (70-130)			
Toluene-D8 101 104 103 104 102	Dibromofluoromethar	ne	100		107		95		107		102	
	1,2-Dichloroethane-d4	4	99		103		95		111		100	
	Toluene-D8		101		104		103		104		102	
4-Bromotluorobenzene 102 109 106 118 105	4-Bromofluorobenzen	ne	102		109		106		118		105	

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Project Manager: Project Name: 8	The Reynold Patricia Dear 204 Blackst Soil	1						Date Samp Date Analy Date Repo Unit Repor	yzed: rted:	12/29/15 12/31/15 01/05/16 μg/kg or pj	ob
C&E LAB I	D	151229E	D- 34	1512290	D -35						
SAMPLE II)	SB-8-2	25	SB-8-3	30						
DF		1		1							
COMPOUN	D	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone		ND	5	ND	5						
Benzene		ND	1	ND	1						
Bromodichloromethan	e	ND	2	ND	2						
Bromoform		ND	5	ND	5						
Bromomethane		ND	2	ND	2						
2-Butanone (MEK)		ND	2	ND	2						
Carbon Disulfide		ND	2	ND	2						
Carbon Tetrachloride		ND	2	ND	2						
Chlorobenzene		ND	2	ND	2						
Chloroethane		ND	2	ND	2						
Chloroform		ND	2	ND	2						
Chloromethane		ND	5	ND	5						
Cyclohexane		ND	2	ND	2						
Dibromochloromethan	ie	ND	5	ND	5						
1,2-Dibromo-3-Chloro	propane	ND	2	ND	2						
1,2-Dibromoethane		ND	2	ND	2						
1,2-Dichlorobenzene		ND	2	ND	2						
1,3-Dichlorobenzene		ND	2	ND	2						
1,4-Dichlorobenzene		ND	2	ND	2						
Dichlorodifluorometha	ane	ND	5	ND	5						
1,1-Dichloroethane		ND	2	ND	2						
1,2-Dichloroethane		ND	2	ND	2						
1,1-Dichloroethene		ND	2	ND	2						
cis-1,2-Dichloroethene	e	ND	2	ND	2						
trans-1,2-Dichloroethe	ene	ND	2	ND	2						
1,2-Dichloropropane		ND	2	ND	2						

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynold Patricia Dear 8204 Blackst Soil	n						Date Samp Date Analy Date Repo Unit Repor	yzed: rted:	12/29/15 12/31/15 01/05/16 μg/kg or p	pb
C&E LAB	ID	1512291) -34	151229I	D-35						
SAMPLE	ID	SB-8-2	25	SB-8-	30						
DF		1		1							
COMPOU	ND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
trans-1,3-Dichloropr	opene	ND	2	ND	2						
cis-1,3-Dichloroprop	oene	ND	2	ND	2						
Ethylbenzene		ND	1	ND	1						
2-Hexanone		ND	2	ND	2						
Methyl Acetate		ND	2	ND	2						
Methylcyclohexane		ND	2	ND	2						
Methylene Chloride		ND	2	ND	2						
4-Methyl-2-Pentanor	ne	ND	2	ND	2						
Styrene		ND	2	ND	2						
Isopropylbenzene		ND	2	ND	2						
4-Isopropyltoluene		ND	2	ND	2						
1,1,2,2-Tetrachloroet	thane	ND	2	ND	2						
Tetrachloroethene		ND	2	ND	2						
Toluene		ND	1	ND	1						
1,2,4-Trichlorobenze	ene	ND	2	ND	2						
1,1,1-Trichloroethan	e	ND	2	ND	2						
1,1,2-Trichloroethan	e	ND	2	ND	2						
Trichloroethene		ND	2	ND	2						
Trichlorofluorometh	ane	ND	2	ND	2						
1,1,2-Trichlorotriflue	oroethane	ND	2	ND	2						
Vinyl Chloride		ND	5	ND	5						
Total Xylenes		ND	1	ND	1						
Surrogate Com	pounds				% Surr	ogate Reco	very (70-130)			
Dibromofluorometha	ane	103		98							
1,2-Dichloroethane-c		107		91							
Toluene-D8		102		102							
4-Bromofluorobenze	ene	109		106							

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 1 of 2

Project Manager: H Project Name: 8	The Reynold Patricia Dean 3204 Blackst Water	1						Date Samp Date Anal Date Repo Unit Repo	yzed: rted:	12/29/16 12/31/16 01/05/16 μg/L or ppb	
C&E LAB I	D	1512290	D -36								
SAMPLE II	D	SB-5-6	ΰW								
DF		1									
COMPOUN	D	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Acetone		ND	2.0								
Benzene		6.2	0.5								
Bromodichloromethan	ne	ND	1.0								
Bromoform		ND	1.0								
Bromomethane		ND	1.0								
2-Butanone (MEK)		ND	2.0								
Carbon Disulfide		ND	1.0								
Carbon Tetrachloride		ND	0.5								
Chlorobenzene		ND	0.5								
Chloroethane		ND	1.0								
Chloroform		ND	1.0								
Chloromethane		ND	1.0								
Cyclohexane		1.0	0.5								
Dibromochloromethar	ne	ND	1.0								
1,2-Dibromo-3-Chloro	opropane	ND	1.0								
1,2-Dibromoethane		ND	1.0								
1,2-Dichlorobenzene		ND	0.5								
1,3-Dichlorobenzene		ND	0.5								
1,4-Dichlorobenzene		ND	0.5								
Dichlorodifluorometha	ane	ND	1.0								
1,1-Dichloroethane		ND	0.5								
1,2-Dichloroethane		ND	0.5								
1,1-Dichloroethene		ND	0.5								
cis-1,2-Dichloroethene	e	ND	0.5								
trans-1,2-Dichloroethe	ene	ND	0.5								
1,2-Dichloropropane		ND	0.5								

To be continued on page 2

ANALYTICAL REPORT

---- EPA 8260B (VOCs) ----

Page 2 of 2

Client Name: Project Manager: Project Name: Sample Matrix: C&E LAB	The Reynold Patricia Dear 8204 Blackst Water	n	D-36					Date Samp Date Analy Date Repo Unit Repor	yzed: rted:	12/29/16 12/31/16 01/05/16 μg/L or ppb)
SAMPLE	ID	SB-5-C	ΰW								
DF		1									
										T	
COMPOU	ND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
trans-1,3-Dichlorop	opene	ND	0.5								
cis-1,3-Dichloroprop	pene	ND	0.5								
Ethylbenzene		10.3	0.5								
2-Hexanone		ND	0.5								
Methyl Acetate		ND	0.5								
Methylcyclohexane		2.3	0.5								
Methylene Chloride		ND	0.5								
4-Methyl-2-Pentano	ne	ND	0.5								
Styrene		ND	0.5								
Isopropylbenzene		1.8	0.5								
4-Isopropyltoluene		ND	0.5								
1,1,2,2-Tetrachloroe	thane	ND	0.5								
Tetrachloroethene		ND	0.5								
Toluene		2.7	0.5								
1,2,4-Trichlorobenze	ene	ND	0.5								
1,1,1-Trichloroethan	ie	ND	0.5								
1,1,2-Trichloroethan	ie	ND	0.5								
Trichloroethene		ND	0.5								
Trichlorofluorometh	ane	ND	0.5								
1,1,2-Trichlorotriflu	oroethane	ND	0.5								
Vinyl Chloride		ND	0.5								
Total Xylenes		80.5	0.5								
Surrogate Con	npounds			(% Surr	ogate Reco	very (70-130)			
Dibromofluorometh	ane	94									
1,2-Dichloroethane-	d4	83									
Toluene-D8		105									
4-Bromofluorobenze	ene	105									

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

---- EPA 8270C (SVOCs) ----

Client Name: The Reynolds Group Date Sampled: 12/29/15 Project Manager: Patricia Dean Date Extracted: 12/30/15 Project Name: 8204 Blackstone Date Analyzed: 01/04/16 Sample Matrix: Water Date Reported: 01/08/16 C&E LAB ID 151229D-36 SAMPLE ID SB-5-GW DF 2

Unit Reported: µg/L or ppb

COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
N-nitrosodimethylamine	ND	40	Result	KL.	Result	KL.	Result	KL.	Result	RL
Bis (2-Chloroethyl) Ether	ND	20								
2-Chlorophenol	ND	20								
Phenol	ND	-								
1,3-Dichlorobenzene		40								
	ND	20								
1,4-Dichlorobenzene	ND	20								
1,2-Dichlorobenzene	ND	20								
Bis (2-Chloroisopropyl) Ether	ND	20								
Hexachloroethane	ND	20								
2-Methyl Phenol	ND	20								
N-Nitrosodi-N-Propylamine	ND	20								
4-Methylphenol	ND	20								
Nitrobenzene	ND	20								
Isophorone	ND	20								
2-Nitrophenol	ND	40								
2,4-Dimethylphenol	ND	20								
Bis (2-Chloroethoxy) Methane	ND	20								
2,4-Dichlorophenol	ND	20								
1,2,4-Trichlorobenzene	ND	20								
Naphthalene	ND	20								
4-Chloroaniline	ND	40								
Hexachlorobutadiene	ND	20								
2-Methylnaphthalene	ND	20								
4-Chloro-3-Methylphenol	ND	20								
Hexachlorocyclopentadiene	ND	20								
2,4,6-Trichlorophenol	ND	20								
2,4,5-Trichlorophenol	ND	20								
2-Chloronaphthalene	ND	20								
2-Nitroaniline	ND	40								
Acenaphthylene	ND	20								
Dimethyl Phthalate	ND	20								
2,6-Dinitrotoluene	ND	20								
Acenaphthene	ND	20								
3-Nitroaniline	ND	40								
4-Nitrophenol	ND	40								
Dibenzofuran	ND	20								

To be continued on page 2

Page 1 of 2

ANALYTICAL REPORT

Page 2 of 2

EPA	8270C	(SVOCs)	
-----	-------	---------	--

Client Name:	The Reynold	ds Group						Date Samp	oled:	12/29/15	
Project Manager:	Patricia Dea							Date Extra		12/30/15	
Project Name:	8204 Blacks							Date Analy			
Sample Matrix:	Water							Date Repo		01/08/16	
C&E LAI		1512291)-36								
SAMPLE		SB-5-C									
DF		2	J VV								
DI		2	II. M	Description	. /T	1					
				Reported:	0	**					
COMPOL	JND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
2,4-Dinitrotoluene		ND	20								
2,4-Dinitrophenol		ND	40								
Fluorene	1.0.1	ND	20								
4-Chlorophenyl Phe	enyl Ether	ND	20								
Diethylphthalate		ND	20								
4-Nitroaniline		ND	40								
Azobenzene		ND	20								
2-Methyl-4,6-Dinitr		ND	20								
4-Bromophenyl Phe		ND	20								
Hexachlorobenzene		ND	20								
Pentachlorophenol		ND	20								
Phenanthrene		ND	20								
Anthracene		ND	20								
Carbazole		ND	20								
Di-N-Butylphthalate	e	ND	20								
Fluoranthene		ND	20								
Pyrene		ND	20								
Butylbenzylphthalat		ND	20								
Benzo(a)Anthracene	e	ND	20								
Chrysene		ND	20								
Bis (2-Ethylhexyl) I	Phthalate	ND	20								
Di-N-Octylphthalate		ND	20								
Benzo (b) Fluoranth	nene	ND	20								
Benzo (k) Fluoranth	nene	ND	20								
Benzo (a) Pyrene		ND	20								
Indeno (1,2,3-c,d) P	yrene	ND	20								
Dibenzo (a,h) Anthi	racene	ND	20								
Benzo (g,h,i) Peryle	ene	ND	20								
Surrogate Cor	npounds			0	6 Surr	ogate Recov	verv ((18-137)			
2-Fluorophenol	npounus	83		/	Juir	Source Reco	, cry (
Phenol-d5		82									
Nitrobenzene-d5		98									
2-Fluorobiphenyl		95									
2,4,6-tribromophene	<u></u>	0*									
p-terphenyl-d14	<u>, , , , , , , , , , , , , , , , , , , </u>	98									
r wiphenyi'ui+		70						1		<u> </u>	

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

*=Surrogate fail due to matrix interference (if marked)

ANALYTICAL REPORT

---- EPA 8081A (Pesticides) ----

Project Manager: Patr	Reynolds Group icia Dean 4 Blackstone er						Date Samp Date Extra Date Analy Date Repo	cted: yzed:	12/29/15 12/30/15 01/05/16 01/08/16	
C&E LAB ID	151229D-	36								
SAMPLE ID	SB-5-GV	SB-5-GW								
DF	2 *	:								
		1	Unit Repor	ted:	µg/L or pp	b				
COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Aldrin	ND (0.200								
α-BHC	ND (0.200								
β-ΒΗϹ	ND (0.200								
γ-ΒΗϹ	ND (0.200								
δ-BHC	ND (0.200								
α-Chlordane	ND (0.200								
δ-Chlordane	ND (0.200								
Total Chlordane	ND (0.200								
4,4'-DDD	ND (0.200								
4,4'-DDE	ND (0.200								
4,4'-DDT	ND (0.200								
Dieldrin	ND (0.200								
Endosulfan I	ND (0.200								
Endosulfan II	ND (0.200								
Endosulfan Sulfate	ND (0.200								
Endrin	ND (0.200								
Endrin Aldehyde	ND (0.200								
Endrin Ketone	ND (0.200								
Heptachlor	ND (0.200								
Heptachlor Epoxide	e ND (0.200								
Methoxychlor	ND (0.200								
Toxaphene	ND	4.00								
Surragata Compound	1		0	(0	ogata Paco		(40, 150)			

Surrogate Compounds		% Surrogate Recovery (40-150)							
2,4,5,6-tetrachloro-m-xylene	84								
decachlorobiphenyl	53								

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

---- EPA 8082 (PCBs) ----

Client Name:	The Reyno	lds Group	Date Sampled:	12/29/15	
Project Manager:	Patricia De	an	Date Extracted:	12/30/15	
Project Name:	8204 Black	stone	Date Analyzed:	01/05/16	
Sample Matrix:	Water			Date Reported:	01/08/16
C&E LAB	ID	151229D-36			
SAMPLE ID		SB-5-GW			
DF 2 *					

Unit Reported: ug/L or ppb

COMPOUND	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
PCB-1016	ND	2.00								
PCB-1221	ND	2.00								
PCB-1232	ND	2.00								
PCB-1242	ND	2.00								
PCB-1248	ND	2.00								
PCB-1254	ND	2.00								
PCB-1260	ND	2.00								

Surrogate Compounds		% Surrogate Recovery (40-150)								
2,4,5,6-tetrachloro-m-xylene	84									
decachlorobiphenyl	53									

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

MI = Matrix Interference; unquantifiable due to coeluting organics in sample.

* = Actual detection limit raised due to matrix interference.

ANALYTICAL REPORT

---- CA Title 22 Metals (7) ----

Client Name:	The Re	ynolds Group		Date Sampled:	12/29/15
Project Manager:	Patricia	Dean		Date Analyzed:	01/05/16
Project Name:	8204 B	lackstone		Date Reported:	01/06/16
Sample Matrix:	Water			Unit Reported:	$\mu g/L$ or ppb
C&E LAB I	D	151229D-36			
SAMPLE II	SAMPLE ID				
DF		1			

COMPOUND	Method	Result	RL								
Antimony (Sb)	6010B	ND	10								
Arsenic (As)	6010B	ND	10								
Barium (Ba)	6010B	73	10								
Beryllium (Be)	6010B	ND	2								
Cadmium (Cd)	6010B	ND	5								
Chromium (Cr)	6010B	ND	5								
Cobalt (Co)	6010B	ND	5								
Copper (Cu)	6010B	ND	5								
Lead (Pb)	6010B	ND	5								
Mercury (Hg)	7470A	ND	1								
Molybdenum (Mo)	6010B	ND	5								
Nickel (Ni)	6010B	ND	5								
Selenium (Se)	6010B	ND	10								
Silver (Ag)	6010B	ND	5								
Thallium (Tl)	6010B	ND	10								
Vanadium (V)	6010B	ND	5								
Zinc (Zn)	6010B	106	10								

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	ynolds Grou Dean ackstone				Date Sampled: Date Analyzed: Date Reported: Unit Reported:		12/29/15 01/05/16 01/06/16 mg/kg or ppm			
C&E LAB II)	151229	D-1	151229	D-2	151229	D-3	151229	D-4	0-4 151229D-	
SAMPLE ID)	SB-5	-1	SB-5	-3	SB-5	-5	SB-5	-7	SB-5-	·10
DF		1		1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Barium (Ba)	6010B	108	1	146	1	120	1	102	1	99	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	13	1	10	1	19	1	11	1	6	1
Cobalt (Co)	6010B	7	1	5	1	7	1	5	1	8	1
Copper (Cu)	6010B	15	1	15	1	14	1	12	1	9	1
Lead (Pb)	6010B	7	1	97	1	2	1	57	1	3	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	11	1	7	1	12	1	7	1	5	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	23	1	18	1	31	1	18	1	24	1
Zinc (Zn)	6010B	57	1	59	1	38	1	40	1	34	1

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	nolds Grou Dean ackstone				Date Sampled: Date Analyzed: Date Reported: Unit Reported:		12/29/15 01/05/16 01/06/16 mg/kg or ppm			
C&E LAB II)	151229	D-10	151229	D-11	151229D-12		151229	D-13	151229	D-14
SAMPLE ID)	SB-6	-1	SB-6	-3	SB-6	-5	SB-6	-7	SB-6-	-10
DF	DF 1			1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	ND	1	2	1	ND	1	ND	1	ND	1
Barium (Ba)	6010B	181	1	147	1	122	1	51	1	67	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	27	1	20	1	23	1	8	1	2	1
Cobalt (Co)	6010B	12	1	8	1	9	1	4	1	5	1
Copper (Cu)	6010B	17	1	42	1	16	1	8	1	3	1
Lead (Pb)	6010B	10	1	94	1	6	1	2	1	1	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	17	1	12	1	14	1	6	1	3	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	47	1	31	1	37	1	15	1	12	1
Zinc (Zn)	6010B	55	1	100	1	42	1	21	1	34	1

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	ynolds Grou Dean ackstone	գլ				Date Sampled: Date Analyzed: Date Reported: Unit Reported:		12/29/15 01/05/16 01/06/16 mg/kg or ppm		
C&E LAB II)	151229	D-19	151229	D-20	151229D-21		151229D-22		151229D-26	
SAMPLE ID)	SB-7	-1	SB-7	-3	SB-7	-5	SB-7-	-10	SB-7	-7
DF	DF 1			1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	ND	1	ND	1	1	1	ND	1	ND	1
Barium (Ba)	6010B	202	1	186	1	331	1	135	1	62	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	14	1	18	1	22	1	9	1	8	1
Cobalt (Co)	6010B	6	1	9	1	3	1	11	1	5	1
Copper (Cu)	6010B	14	1	38	1	4	1	13	1	9	1
Lead (Pb)	6010B	142	1	175	1	185	1	5	1	4	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	8	1	12	1	2	1	10	1	6	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	21	1	31	1	7	1	25	1	17	1
Zinc (Zn)	6010B	150	1	177	1	238	1	64	1	42	1

ANALYTICAL REPORT

---- CA Title 22 Metals (17) ----

Client Name: Project Manager: Project Name: Sample Matrix:	Patricia	nolds Grou Dean ackstone			Date Sampled: Date Analyzed: Date Reported: Unit Reported:		12/29/15 01/05/16 01/06/16 mg/kg or ppm				
C&E LAB II)	151229	D-27	151229	D-28	151229	D-29	151229D-30		151229D-31	
SAMPLE ID)	SB-8	-1	SB-8	-3	SB-8	-5	SB-8	-7	SB-8-	-10
DF		1		1		1		1		1	
COMPOUND	Method	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Antimony (Sb)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Arsenic (As)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Barium (Ba)	6010B	178	1	143	1	163	1	132	1	70	1
Beryllium (Be)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Cadmium (Cd)	6010B	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Chromium (Cr)	6010B	22	1	17	1	21	1	17	1	10	1
Cobalt (Co)	6010B	8	1	8	1	9	1	9	1	6	1
Copper (Cu)	6010B	38	1	21	1	16	1	12	1	10	1
Lead (Pb)	6010B	4852	1	55	1	4	1	3	1	4	1
Mercury (Hg)	7471	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1
Molybdenum (Mo)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Nickel (Ni)	6010B	14	1	13	1	14	1	12	1	7	1
Selenium (Se)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Silver (Ag)	6010B	ND	1	ND	1	ND	1	ND	1	ND	1
Thallium (Tl)	6010B	ND	2	ND	2	ND	2	ND	2	ND	2
Vanadium (V)	6010B	34	1	28	1	35	1	32	1	20	1
Zinc (Zn)	6010B	195	1	90	1	45	1	41	1	32	1

ANALYTICAL REPORT

Client Name:The Reynolds GroupSample Matrix:Project Manager:Patricia DeanDate Sampled:Project Name:8204 BlackstoneDate Reported:												
					RES	SULT						
					C&E ID	C&E ID						
Constituents	Method	Units	Reporting	Date	151229D-36							
			Limit	Analyzed	Sample ID	Sample ID						
					SB-5-GW							
Biochemical Oxygen Demand	SM 5210B	mg/L	1.0	01/04/16	1.9							
Oil & Grease	EPA 1664A	mg/L	1.0	01/06/16	ND							
Chlorine, Total Residual	SM 4500-CI F	mg/L	0.10	12/30/15	ND							
Surfactants(MBAS)	SM 5540 C	mg/L	0.10	12/30/15	ND							
Phenols, Total	EPA 420.1	mg/L	0.10	12/30/15	ND							
Settleable Solids	SM 2540 F	ml/L	0.1	12/30/15	0.20							
Total Dissolved Solids	SM 2540 C	mg/L	1.00	01/04/16	1060							
Sulfides	SM 4500 S2-D	mg/L	0.05	12/30/15	ND							

Lang 3hy

Larry Zhang, Ph.D., Laboratory Director ELAP Certificate No.: 2268

ANALYTICAL REPORT

---- EPA 6010B (STLC Lead) ----

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil		Date Sampled: Date Analyzed: Date Reported: Unit Reported:	12/28/15 01/25/16 01/28/16 mg/L or ppm
C&E LAB ID	SAMPLE ID	DF	RESULT	RL
151229D-2	SB-5-3	1	3.8	0.1
151229D-11	SB-6-3	1	4.9	0.1
151229D-19	SB-7-1	1	6.3	0.1
151229D-20	SB-7-3	1	6.8	0.1
151229D-21	SB-7-5	1	0.9	0.1
151229D-27	SB-8-1	10	174	0.1

ANALYTICAL REPORT

---- EPA 6010B (TCLP Lead) ----

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil		Date Sampled: Date Analyzed: Date Reported: Unit Reported:	12/29/15 01/25/16 01/28/16 mg/L or ppm
C&E LAB ID	SAMPLE ID	DF	RESULT	RL
151229D-2	SB-5-3	1	0.2	0.1
151229D-11	SB-6-3	1	0.1	0.1
151229D-19	SB-7-1	1	0.2	0.1
151229D-20	SB-7-3	1	0.1	0.1
151229D-21	SB-7-5	1	0.2	0.1
151229D-27	SB-8-1	1	6.4	0.1

QC REPORT

--- 8015M (Diesel) ---

I. Laboratory Control Sample

Date Analyzed: 12/30/15 LCS ID: TPH151230LC

ANALYTE	LCS %	ACP %CL
Diesel	85	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 12/30/15 QC Batch : TPH151230MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
Diesel	86	81	6	70-130	20

III. Method Blank

Date Analyzed: 12/30/15

Unit: mg/kg

COMPOUND	REPORTING LIMIT	RESULT
Diesel	1	ND

Surrogate Compounds	% Surr. Rec. (70-130)
BFB	111

QC REPORT

---- EPA 8260B (VOC) ----

I. Laboratory Control Sample

Date Analyzed: 12/31/15

LCS ID: VOC151231LC

ANALYTE	LCS %	ACP %CL
1,1-Dichloroethene	120	70-130
Benzene	125	70-130
Trichloroethene	115	70-130
Toluene	125	70-130
Chlorobenzene	125	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: QC Batch:

12/31/15 VOC151231MS

Reporting

Limit

5

1

2

2

2

2

2

2

2

2

2

5

2

2

2

2

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
1,1-Dichloroethene	115	115	0	70-130	20
Benzene	115	110	4	70-130	20
Trichloroethene	110	115	4	70-130	20
Toluene	115	110	4	70-130	20
Chlorobenzene	115	110	4	70-130	20

III. Method Blank

COMPOUND

Bromodichloromethane

Acetone

Benzene

Bromoform

Bromomethane

2-Butanone (MEK)

Carbon Tetrachloride

Dibromochloromethane

1,2-Dibromoethane

1,2-Dibromo-3-Chloropropane

Carbon Disulfide

Chlorobenzene

Chloromethane

Cyclohexane

Chloroethane

Chloroform

Date Analyzed: 12/31/15

RESULT	COMPOUND	Reporting Limit	RESULT
ND	1,2-Dichlorobenzene	2	ND
ND	1,3-Dichlorobenzene	2	ND
ND	1,4-Dichlorobenzene	2	ND
ND	Dichlorodifluoromethane	2	ND
ND	1,1-Dichloroethane	2	ND
ND	1,2-Dichloroethane	2	ND
ND	1,1-Dichloroethene	2	ND
ND	cis-1,2-Dichloroethene	2	ND
ND	trans-1,2-Dichloroethene	2	ND
ND	1,2-Dichloropropane	2	ND
ND	trans-1,3-Dichloropropene	2	ND
ND	cis-1,3-Dichloropropene	2	ND
ND	Ethylbenzene	1	ND
ND	2-Hexanone	2	ND
ND	Methyl Acetate	2	ND
ND	Methylcyclohexane	2	ND

COMPOUND	Reporting Limit	RESULT
Methylene Chloride	2	ND
4-Methyl-2-Pentanone	2	ND
Styrene	2	ND
Isopropylbenzene	2	ND
4-Isopropyltoluene	2	ND
1,1,2,2-Tetrachloroethane	2	ND
Tetrachloroethene	2	ND
Toluene	1	ND
1,2,4-Trichlorobenzene	2	ND
1,1,1-Trichloroethane	2	ND
1,1,2-Trichloroethane	2	ND
Trichloroethene	2	ND
Trichlorofluoromethane	2	ND
1,1,2-Trichlorotrifluoroethane	2	ND
Vinyl Chloride	5	ND
Total Xylenes	1	ND

Surrogate Compounds	% Surr. Rec. (70-130)
Dibromofluoromethane	82
1,2-Dichloroethane-d4	84
Toluene-D8	96
4-Bromofluorobenzene	99

Unit: µg/kg

QC REPORT

---- EPA 8270C (SVOC) ----

I. Laboratory Control Sample

Date Extracted: 12/29/15 Date Analyzed: 01/04/16

LCS ID: SVOC160104CW

ANALYTE	LCS %	ACP %CL
Phenol	105	40-150
1,4-Dichlorobenzene	107	40-150
2,4-Dichlorophenol	105	40-150
Hexachlorobutadiene	102	40-150
4-Chloro-3-methylphenol	106	40-150
Fluoranthene	87	40-150

II. Matrix Spike/Matrix Spike Duplicate

Date Extracted: 12/29/15

Date Analyzed: 01/04/16

QC Batch #: SVOC160104MS

ANALYTE	MS %	MSD %	RPD	ACP %CL	ACP RPD
Phenol	68	67	1	40-150	30
Pyrene	59	63	7	40-150	30

QC REPORT ---- EPA 8270C (SVOC) ----

F

III. Method Blank

Date Extracted: 12/29/15

-

Date Analyzed: 01/04/16

Т

Unit: µg/L

COMPOUND	Reporting	RESULT	COMPOUND	Reporting	RESULT
	Limit			Limit	
N-nitrosodimethylamine	20	ND	2,4-Dinitrotoluene	10	ND
Bis (2-Chloroethyl) Ether	10	ND	2,4-Dinitrophenol	20	ND
2-Chlorophenol	10	ND	Fluorene	10	ND
Phenol	20	ND	4-Chlorophenyl Phenyl Ether	10	ND
1,3-Dichlorobenzene	10	ND	Diethylphthalate	10	ND
1,4-Dichlorobenzene	10	ND	4-Nitroaniline	20	ND
1,2-Dichlorobenzene	10	ND	Azobenzene	10	ND
Bis (2-Chloroisopropyl) Ether	10	ND	4,6-Dinitro-2-Methyl Phenol	10	ND
Hexachloroethane	10	ND	4-Bromophenyl Phenyl Ether	10	ND
2-Methyl Phenol	10	ND	Hexachlorobenzene	10	ND
N-Nitrosodi-N-Propylamine	10	ND	Pentachlorophenol	10	ND
4-Methylphenol	10	ND	Phenanthrene	10	ND
Nitrobenzene	10	ND	Anthracene	10	ND
Isophorone	10	ND	Carbazole	10	ND
2-Nitrophenol	20	ND	Di-N-Butylphthalate	10	ND
2,4-Dimethylphenol	10	ND	Fluoranthene	10	ND
Bis (2-Chloroethoxy) Methane	10	ND	Pyrene	10	ND
2,4-Dichlorophenol	10	ND	Butylbenzylphthalate	10	ND
1,2,3-Trichlorobenzene	10	ND	Benzo(a)Anthracene	10	ND
Naphthalene	10	ND	Chrysene 10		ND
4-Chloroaniline	20	ND	Bis (2-Ethylhexyl) Phthalate 10		ND
Hexachlorobutadiene	10	ND	Di-N-Octylphthalate	10	ND
1-Methylnaphthalene	10	ND	Benzo (b) Fluoranthene	10	ND
4-Chloro-3-Methylphenol	10	ND	Benzo (k) Fluoranthene	10	ND
Hexachlorocyclopentadiene	10	ND	Benzo (a) Pyrene	10	ND
2,4,6-Trichlorophenol	10	ND	Indeno (1,2,3-c,d) Pyrene	10	ND
2,3,4-Trichlorophenol	10	ND	Dibenzo (a,h) Anthracene	10	ND
1-Chloronaphthalene	10	ND	Benzo (g,h,i) Perylene 10		ND
2-Nitroaniline	20	ND			1]
Acenaphthylene	10	ND	Surrogate Compounds % St		Rec (40-140)
Dimethyl Phthalate	10	ND	2-Fluorophenol		98
2,6-Dinitrotoluene	10	ND	1		94
Acenaphthene	10	ND			112
3-Nitroaniline	20	ND			113
4-Nitrophenol	20	ND	2,4,6-tribromophenol		72
Dibenzofuran	10	ND	p-terphenyl-d14		74
	1	1	* * *	I	

QC REPORT

---- EPA 8082 (PCBs) ----

I. Laboratory Control Sample

Date Extracted:	12/30/15
Date Analyzed:	01/05/16
LCS ID:	PCB151230LCW

ANALYTE	LCS %	ACP%CL
PCB(1016+1260)	106	75-125

II. Matrix Spike/Matrix Spike Duplicate

Date Extracted:	12/30/15
Date Analyzed:	01/05/16
QC Batch:	PCB151230MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
PCB(1016+1260)	77	79	3	70-130	20

III. Method Blank

Date Extracted:	12/30/15
Date Analyzed:	01/05/16

Unit: µg/L

REPORTING LIMIT	RESULT
1.00	ND
	1.00 1.00 1.00 1.00 1.00 1.00

Surrogate Compounds	% Surr. Rec. (40-150)
2,4,5,6-tetrachloro-m-xylene	75
decachlorobiphenyl	73

QC REPORT

--- EPA 8081A (Pesticides) ---

I. Laboratory Control Sample

Date Extracted:	12/30/15
Date Analyzed:	01/05/16
LCS ID:	PEST151230LC

ANALYTE	LCS %	ACP %CL
gamma-BHC	115	75-125
Aldrin	97	75-125
Dieldrin	88	75-125
4,4'-DDE	81	75-125

II. Matrix Spike/Matrix Spike Duplicate

Date Extracted:	12/30/15
Date Analyzed:	01/05/16
QC Batch:	PEST151230MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
gamma-BHC	123	118	4	70-130	0-20
Aldrin	108	109	1	70-130	0-20
4,4'-DDE	88	88	0	70-130	0-20

III. Method Blank

Date Extracted:12/30/15Date Analyzed:01/05/16

COMPOUDN	REPORTING	RESULT
COMICODIN	LIMIT	RESULT
Aldrin	0.100	ND
a-BHC	0.100	ND
β-ΒΗC	0.100	ND
γ-ΒΗC	0.100	ND
δ-ΒΗC	0.100	ND
Chlordane	0.100	ND
4,4'-DDD	0.100	ND
4,4'-DDE	0.100	ND
4,4'-DDT	0.100	ND
Dieldrin	0.100	ND

	Unit: µg/L							
COMPOUDN	REPORTING LIMIT	RESULT						
Endosulfan I	0.100	ND						
Endosulfan II	0.100	ND						
Endosulfan Sulfate	0.100	ND						
Endrin	0.100	ND						
Endrin Aldehyde	0.100	ND						
Endrin Ketone	0.100	ND						
Heptachlor	0.100	ND						
Heptachlor Epoxide	0.100	ND						
Methoxychlor	0.100	ND						
Toxaphene	2.00	ND						

Surrogate Compounds	% Surr. Rec. (40-150)
2,4,5,6-tetrachloro-m-xylene	75
decachlorobiphenyl	73

QC REPORT

---- EPA 6010B (Metalsl) ----

I. Laboratory Control Sample

Date Analyzed: 01/05/16 LCS ID: MET160105LC

ANALYTE	LCS %	ACP %CL
Arsenic	108	70-130
Selenium	112	70-130
Cadmium	106	70-130
Lead	110	70-130
Barium	110	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 01/05/16 QC Batch #: MET160105MS

ANALYTE	MS %	MSD %	RPD	ACP %CL	ACP RPD
Arsenic	104	105	1	70-130	20
Selenium	105	106	1	70-130	20
Cadmium	106	107	1	70-130	20
Lead	108	109	1	70-130	20
Barium	109	110	1	70-130	20

III. Method Blank

Date Analyzed: 01/05/16

	REPORTING	
COMPOUND	LIMIT	RESULT
Antimony (Sb)	2	ND
Arsenic (As)	1	ND
Barium (Ba)	1	ND
Berryllium (Be)	1	ND
Cadmium (Cd)	0.5	ND
Chromium (Cr)	1	ND
Cobalt (Co)	1	ND
Copper (Cu)	1	ND
Lead (Pb)	1	ND

		00
	REPORTING	
COMPOUND	LIMIT	RESULT
Molybdenum (Mo)	1	ND
Nickel (Ni)	1	ND
Selenium (Se)	2	ND
Silver (Ag)	1	ND
Thallium (Tl)	2	ND
Vanadium (V)	1	ND
Zinc (Zn)	1	ND

Unit: mg/kg

QC REPORT

---- EPA 6010B (Lead in Soil) ----

I. Laboratory Control Sample

Date Analyzed: 01/25/16 LCS ID: Pb160125LC

ANALYTE	LCS %	ACP %CL
Lead	95	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 01/25/16 QC Batch : Pb160125MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
Lead	99	97	2	70-130	20

III. Method Blank

Date Analyzed: 01/25/16 Unit: mg/kg

COMPOUND	REPORTING LIMIT	RESULT
Lead	1	ND

CHAIN OF CUSTODY RECORD

C & E LABOR	ATORIE	S, INC.										C&E L	ABID	2291	2
13824 Bentley Plac	e, Cerritos, C	CA 90703	1	Tel: (562) 926-	8091		Fax: (50	52) 926-5	5940			1000	1.		
Company Name: T		The Rey	nolds Gro	oup	Site A	ddress:	3.	38 S.	till s	Т.		P	age	1 of	3
Project Manag	er:	PATRICI	A DEAN	2.118			L	os ANI	BELES,	CA		Sample Conditions			
		8204/P						din .		1.5		<u>x</u> C	hilled	Seal	s Intact
			714-730-	-6476	Samp	led By:	P	DICL				Turn	Around	I Time D	esired
			JAWFLE			_						Norma	Same	Day / 24	hr / 48hr
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	MATRIX (air/soil/water	NO. OF CONTAINERS/ TYPE	8015M TPH-G	8015M TPH-D	8021B BTEX MTBE	418 TRPH	8260B BTEX OXY.	8260B VOC	CAM METALS	8270C SVOC	6010B LEAD		
58-5-1	12/29/15	0720	SOIL	sleeve							X				
58-5-3	1.1	0725	1	1							X	N.S.			
58-5-5	1. J. P.	0734						X		14.3	X				
SB-5 -7		0798									X				
58-5-20		0245		1				X			X				
5B-5-15		0748						X	的原则						
516-5-20		0255	1-	-		3 11		X			and the				0
11-5-25		0759		•		5		X							
38-5-30		0803						X							
· 3B-6-1		0847		*							X				
53-6-3		0852	alin	sleeve	14	Car .					X				
· 38-6-5		0859		dow tencore		2			Sel s	X	×				A MARKER
· 3B-6-7		0902	10 M	TOONE							×		11		1 3
. 53-6-10		0909	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	BLOND HENOR	grune)	1.1				X	X			0	
53-6-15		0916		· plenone	N.					×				15	ALL ST
53-6-20		0922	A	7-	Si.				19. 1	X		1.19		1	Circle 1
. 53-6-25		0927	Pal	V	1				2	×	1.1				
58-6-30		0933		se encore?	-	1	1			X					
· 20-7-1	V	1112	V	Sleeve	12						×				1.19
· 98-7-3	2/29/15	1115	100	Sleeve	1						X				
Relinquished By:		Date/Tim	e: 5 1645	Received By:	race	Won	P Date	25/1J	- 16:		quired: (cir DF <u>Globa</u>		Yes : T	No	>
Relinquished By:		Date/Tim		Received By:			J Date	e/Time:		Com	ments:				

				CHAIN O	F CUS	STODY	RECO	DRD							
C & E Lab 13824 Bentley Place	. Cerritos CA	* \ 90703		Tel: (562) 926	-8091		Fax: (50	62) 926-5	940			C&E L/	AB 1D 1512	290	
Company Nam			nolds G			ddress:		8 5.		4		P	age 2	of Z	5
Project Manag Project No./Nar	er:	Patricia		· · ·	ene ,			o Ar				5	Sample (Conditions	3
Tel: (<u>714)7</u>			(714) 730		Samp	led By:	Pa	tricia	Dean	-				Time Des Day / 24hr	
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	SAMPLE MATRIX (air/soil/water)	NO. OF CONTAINERS/TY PE	8015M TPH-G	8015M TPH-D	8021B BTEX MTBE	418.1 TRPH	8260B BTEX OXY.	8260B VOC	CAM METALS	8270C SVOC	6010B LEAD	Naphthal	
33-7-5	12/29/15	1124	Soil	steve + encores		,				X	X				
58-7-10		1120113	3	deau seriore	>		1000	1280		X	X				
30-7-15.		118514	6	encors				-+		X					
38-7-20	- 51	1146		encores						×					
3B-7-30		1158		encores						X					
53-7-7		1126		Sleeve		1.					X				
53-8-1		1254		sleeve							X				
53-8-3		1258	and the second	deere							×				
57-8-5		1305		sloeve tencore	>					X	X		1.1		
53-8-7		1309		sleeve			5				X				
50-8-10		1316		deaux encon	>		-	10.00		X	X			1.1	
58-8-15		1322		encone>	- 1 - 1				9	X					
56-8-20	1	1331		encores						X		1.11	111	Sec. 1	-
53-8-25	V	1337	V	encores						X					
53-8-30	12/29/15	1340	5011	enconer	-					X					
	1.1.1			*											
								-						1	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					2			-					**		
			-										-		
Refinquished By:		Date/Tim		Received By:	act	Want) Date	ertime:/	f	1 1 1	Required EDF Globa		Yes T_	No	>
Relinquished By:		Date/Tim		Received By:	and	1		e/Time:	1		ments:				

CHAIN OF CUSTODY RECORD

3824 Bentley Place, Cerritos, CA 90703 Company Name: The Reynolds Gro			Tel: (562) 926-8091							Dans of at 1					
		PATRICIA DEAN		Site Address:		238 S. HILL ST. LOS ANGELES, CA					Page 3 1 of 3 Sample Conditions <u>x</u> Chilled Seals Intact Turn Around Time Desired				
Tel: 714-730-5397			8204 BLACKSTONE					01 100							100
Tel: <u>714-73</u>	0-5397	Fax: 714-730-6476			Sampled By:		CL/PD BARCES TPH PERIODES			DIL+	Normal) Same Day / 24hr				
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	MATRIX (air/soil/water	NO. OF CONTAINERS/ TYPE	8015M TPH-G	PHENOLS 8015M TPH-D	80278 BTEX MTBE	418/1 TRPH	8260B B7EX 9XY.	8260B VOC	CAM METALS	8270C SVOC	60108 LEAD	Prisoned Metals (146 filter	3006 20°C
38-5-GW	12/29/15	0915	WATER	3AMRER+2 VOA	×	×	×	×	×	х	×	×	×	×	×
						1									
													1		
									-	i Bittan					
NOTE :	PLEASE	ALSO	ANALYZE	SAMPLE	FOR	THE F	PLLOW 1.	VG:							
			and the second se	BLE SOLID.	of the Harry Inc.							1			
				L CHLORIN											5.61
			METHYL	ENE BLUE	ACTIVE	SUBS	TANCES	(MBI	AS)						
									~	A Provent	A. 19				
															144
etinquished By:		Date/Tim	e: 5 1645	Received By;	acol	01	() Date	e/Tylinge: /		EDF Re	quired: (cir	cle)	Yes	No	7

January 29, 2016

ELAP Certificate No: 2268

Ms. Patricia Dean The Reynolds Group 520 West 1st St. Tustin, CA 92780

Project:8204 BlackstoneC&E ID:151228E

Dear Ms. Dean,

Enclosed is an analytical report for the sample(s) received by Chemical & Environmental Laboratories, Inc. on December 28, 2015, and analyzed as indicated in the chain-of-custody attached.

Unless otherwise noted, no problems were encountered during receiving, preparation and analysis of these samples.

Please call me at (562) 926-8091 if you have any questions regarding this report.

Sincerely,

Lang 3hy

Larry Zhang, Ph.D. Laboratory Director

ANALYTICAL REPORT

---- EPA 6010B (STLC Lead) ----

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil		Date Sampled: Date Analyzed: Date Reported: Unit Reported:	12/28/15 01/25/16 01/28/16 mg/L or ppm
C&E LAB ID	SAMPLE ID	DF	RESULT	RL
151228E-11	SB-2-3	10	179	1
151228E-12	SB-2-5	1	2.6	0.1
151228E-19	SP-3-1	1	4.0	0.1

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

ANALYTICAL REPORT

---- EPA 6010B (TCLP Lead) ----

Client Name: Project Manager: Project Name: Sample Matrix:	The Reynolds Group Patricia Dean 8204 Blackstone Soil		Date Sampled: Date Analyzed: Date Reported: Unit Reported:	12/28/15 01/25/16 01/28/16 mg/L or ppm
C&E LAB ID	SAMPLE ID	DF	RESULT	RL
151228E-11	SB-2-3	1	5.5	0.1
151228E-12	SB-2-5	1	ND	0.1
151228E-19	SP-3-1	1	ND	0.1

ND = Not detected at the indicated reporting limit; DF = Dilution Factor; RL = Reporting limit.

QC REPORT

---- EPA 6010B (Lead in Soil) ----

I. Laboratory Control Sample

Date Analyzed: 01/25/16 LCS ID: Pb160125LC

ANALYTE	LCS %	ACP %CL
Lead	95	70-130

II. Matrix Spike/Matrix Spike Duplicate

Date Analyzed: 01/25/16 QC Batch : Pb160125MS

ANALYTE	MS %	MSD %	RPD	ACP%CL	ACP RPD
Lead	99	97	2	70-130	20

III. Method Blank

Date Analyzed: 01/25/16 Unit: mg/kg

COMPOUND	REPORTING LIMIT	RESULT
Lead	1	ND

CHAIN OF CUSTODY RECORD

C & E LABORATORIES, INC.												21528E			
13824 Bentley Plac	e, Cerritos, C	CA 90703		Tel: (562) 926	-8091		Fax: (562) 926-5940								
Company Nar	ne:	The Rey	nolds Gro	oup	Site Address:		338 S. HILL ST. LOS ANGELES, CA				1	Page 1 of 3			
Project Manag	ger:	PATRICI	A DEAN									Sample Conditions			
Project No./Na		8204 PLACKSTONE									x Chilled Seals Intact				
Tel: 714-730-5397			714-730-	Sampled By:		PD/CL					Turn Around Time Desired Normal) Same Day / 24hr / 48hr				
		No.													
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	MATRIX (air/soil/water	NO. OF CONTAINERS/ TYPE	8015M TPH-G	8015M TPH-D	8021B BTEX MTBE	TAH8.9	8260B BTEX OXY.	8260B VOC	CAM METALS	8270C SVOC			
SB1-1	12/28/15	0730	SOIL	Sleeve		. Strain and					X		X		1
5B1-3	1. 1. 1. J.	0738	1								X	- wax	X		
58-1-5		0824				1.110.2	(X			X		X		
58-1-7		0825						- 1.	1000		X		X		
58-1-10		0833	i in i					X			X		-		
SB-1-15		0840			-		and the	X							
SB -1-20		0843						X	-	Harris .	and the second	1997			
SB -1-25		0847						X			1912				
SB-1-30		0852	100		5			\mathbf{x}			A. A. T.				
03-2-1		0925								-	X	-			
53-2-3		0928							alue.	Santa	X				
SB-2-5		0931						X		2	X		-		
SB-2-7		0938									×				
58-2-10		0943						X			X			•	
00-2-15		0951		•				X			1.1.1				
00-2-15 1B-2-20		0955					1	X		1					
5B-2-25	1.	0959						X				2			
SB-2-30		1005			1. S. S.			X							
33-3-1		1050	1	slepte							X				
53-3-3	1/28/15	1053	50.1	Sleeve	3.		41				X				
Vato Du		Date/Tim	ne: 5 1713	Received By:	220	5	Dat	e/Time: 2/28/1	ר חו		quired: (cir DF Globa		Yes : T	No	
Relinquished By:		Date/Tim		Received By: 0				e/Time:	1	Com	ments:	No.	- Stan	STOPPEN S	